Source code for omas.omas_sample

'''sample ODS methods and utilities

-------
'''

from .omas_utils import *
from .omas_core import ODS
from .omas_physics import constants
from .omas_plot import geo_type_lookup

__all__ = []
__ods__ = []


def add_to_ODS(f):
    """
    anything wrapped here will be available as a ODS method with name 'sample_'+f.__name__
    """
    __ods__.append(f.__name__)
    return f


[docs]def ods_sample(ntimes=1): """ Returns an ODS populated with all of the samples :param ntimes: number of time slices to generate :return: sample ods """ return ODS().sample(ntimes=ntimes)
@add_to_ODS def dataset_description(ods): ods['dataset_description.data_entry.machine'] = 'test' ods['dataset_description.data_entry.pulse'] = 100 return ods @add_to_ODS def equilibrium( ods, time_index=0, include_profiles=True, include_phi=True, include_psi=True, include_wall=True, include_q=True, include_xpoint=False ): """ Add sample equilibrium data This method operates in in-place. :param ods: ODS instance :param time_index: int Under which time index should fake equilibrium data be loaded? :param include_profiles: bool Include 1D profiles of pressure, q, p', FF' They are in the sample set, so not including them means deleting them. :param include_phi: bool Include 1D and 2D profiles of phi (toroidal flux, for calculating rho) This is in the sample set, so not including it means deleting it. :param include_psi: bool Include 1D and 2D profiles of psi (poloidal flux) This is in the sample set, so not including it means deleting it. :param include_wall: bool Include the first wall This is in the sample set, so not including it means deleting it. :param include_q: bool Include safety factor This is in the sample set, so not including it means deleting it. :param include_xpoint: bool Include X-point R-Z coordinates This is not in the sample set, so including it means making it up :return: ODS instance with equilibrium data added """ from omas import load_omas_json eq = load_omas_json(omas_dir + 'samples/sample_equilibrium_ods.json', consistency_check=False) phi = eq['equilibrium.time_slice.0.profiles_1d.phi'] psi = eq['equilibrium.time_slice.0.profiles_1d.psi'] q = eq['equilibrium.time_slice.0.profiles_1d.q'] if not include_profiles: del eq['equilibrium.time_slice.0.profiles_1d'] if not include_phi: if 'profiles_1d' in eq['equilibrium.time_slice.0']: del eq['equilibrium.time_slice.0.profiles_1d.phi'] del eq['equilibrium.time_slice.0.profiles_2d.0.phi'] else: eq['equilibrium.time_slice.0.profiles_1d.phi'] = phi if not include_psi: if 'profiles_1d' in eq['equilibrium.time_slice.0'] and 'psi' in eq['equilibrium.time_slice.0.profiles_1d']: del eq['equilibrium.time_slice.0.profiles_1d.psi'] del eq['equilibrium.time_slice.0.profiles_2d.0.psi'] else: eq['equilibrium.time_slice.0.profiles_1d.psi'] = psi if not include_q: if 'profiles_1d' in eq['equilibrium.time_slice.0'] and 'q' in eq['equilibrium.time_slice.0.profiles_1d']: del eq['equilibrium.time_slice.0.profiles_1d.q'] else: eq['equilibrium.time_slice.0.profiles_1d.q'] = q if not include_wall: del eq['wall'] if include_xpoint: eq['equilibrium.time_slice'][0]['boundary.x_point.0.r'] = 1.304 eq['equilibrium.time_slice'][0]['boundary.x_point.0.z'] = -1.222 ods['equilibrium.time_slice'][time_index].update(eq['equilibrium.time_slice.0']) ods['equilibrium.time_slice'][time_index]['time'] = float(time_index) ods['equilibrium.vacuum_toroidal_field.r0'] = eq['equilibrium.vacuum_toroidal_field.r0'] ods.set_time_array('equilibrium.vacuum_toroidal_field.b0', time_index, eq['equilibrium.vacuum_toroidal_field.b0'][0]) ods.set_time_array('equilibrium.time', time_index, float(time_index)) return ods @add_to_ODS def core_profiles(ods, time_index=0, add_junk_ion=False, include_pressure=True): """ Add sample core_profiles data This method operates in in-place. :param ods: ODS instance :param time_index: int :param add_junk_ion: bool Flag for adding a junk ion for testing how well functions tolerate problems. This will be missing labels, etc. :param include_pressure: bool Include pressure profiles when temperature and density are added :return: ODS instance with profiles added """ from omas import load_omas_json pr = load_omas_json(omas_dir + 'samples/sample_core_profiles_ods.json', consistency_check=False) ods['core_profiles.profiles_1d'][time_index].update(pr['core_profiles.profiles_1d.0']) ods['core_profiles.vacuum_toroidal_field.r0'] = pr['core_profiles.vacuum_toroidal_field.r0'] ods.set_time_array('core_profiles.vacuum_toroidal_field.b0', time_index, pr['core_profiles.vacuum_toroidal_field.b0'][0]) if add_junk_ion: ions = ods['core_profiles.profiles_1d'][time_index]['ion'] ions[len(ions)] = copy.deepcopy(ions[len(ions) - 1]) for item in ions[len(ions) - 1].flat(): ions[len(ions) - 1][item] *= 0 if not include_pressure: for item in ods.physics_core_profiles_pressures(update=False).flat().keys(): if p2l(item)[0] == 'core_profiles' and p2l(item)[-1].startswith('pres') and item in ods: del ods[item] ods['core_profiles.profiles_1d'][time_index]['time'] = float(time_index) ods.set_time_array('core_profiles.time', time_index, float(time_index)) return ods @add_to_ODS def ic_antennas(ods): """ Add sample ic_antennas data This method operates in in-place. :param ods: ODS instance :return: ODS instance with profiles added """ from omas import load_omas_json ods.update(load_omas_json(omas_dir + 'samples/sample_ic_antennas_ods.json', consistency_check=False)) return ods @add_to_ODS def core_sources(ods, time_index=0): """ Add sample core_profiles data This method operates in in-place. :param ods: ODS instance :param time_index: int :return: ODS instance with sources added """ from omas import load_omas_json pr = load_omas_json(omas_dir + 'samples/sample_core_sources_ods.json', consistency_check=False)['core_sources'] if 'core_sources' not in ods: ods['core_sources'].update(pr) else: for item in pr: if item not in ods['core_sources']: ods['core_sources'][item] = pr[item] sources = pr['source'] for source in sources: ods['core_sources.source'][source]['identifier'].update(sources[source]['identifier']) ods['core_sources.source'][source]['profiles_1d'][time_index].update(sources[source]['profiles_1d.0']) ods.set_time_array('core_sources.time', time_index, float(time_index)) return ods @add_to_ODS def core_transport(ods, time_index=0): """ Add sample core_profiles data This method operates in in-place :param ods: ODS instance :param time_index: int :return: ODS instance with sources added """ from omas import load_omas_json pr = load_omas_json(omas_dir + 'samples/sample_core_transport_ods.json', consistency_check=False)['core_transport'] if 'core_transport' not in ods: ods['core_transport'].update(pr) else: for item in pr: if item not in ods['core_transport']: ods['core_transport'][item] = pr[item] models = pr['model'] for model in models: ods['core_transport.model'][model]['identifier'].update(models[model]['identifier']) ods['core_transport.model'][model]['profiles_1d'][time_index].update(models[model]['profiles_1d.0']) ods.set_time_array('core_transport.time', time_index, float(time_index)) return ods @add_to_ODS def summary(ods): """ Add sample core_profiles data This method operates in in-place :param ods: ODS instance :return: ODS instance with sources added """ from omas import load_omas_json pr = load_omas_json(omas_dir + 'samples/sample_summary_ods.json', consistency_check=False)['summary'] ods['summary'].update(pr) return ods @add_to_ODS def pf_active(ods, nc_weird=0, nc_undefined=0): """ Adds fake active PF coil locations This method operates in in-place :param ods: ODS instance :param nc_weird: int Number of coils with badly defined geometry to include for testing plot overlay robustness :param nc_undefined: int Number of coils with undefined geometry_type (But valid r, z outlines) to include for testing plot overlay robustness. :return: ODS instance with PF active hardware information added """ nc_reg = 4 nc = nc_reg + nc_weird + nc_undefined fc_dat = [ # R Z dR dZ tilt1 tilt2 [0.8608, 0.16830, 0.0508, 0.32106, 0.0, 0.0], [1.0041, 1.5169, 0.13920, 0.11940, 45.0, 0.0], [2.6124, 0.4376, 0.17320, 0.1946, 0.0, 92.40], [2.3834, -1.1171, 0.1880, 0.16920, 0.0, -108.06], ] rect_code = geo_type_lookup('rectangle', 'pf_active', ods.imas_version, reverse=True) outline_code = geo_type_lookup('outline', 'pf_active', ods.imas_version, reverse=True) for i in range(nc_reg): if (fc_dat[i][4] == 0) and (fc_dat[i][5] == 0): rect = ods['pf_active.coil'][i]['element.0.geometry.rectangle'] rect['r'] = fc_dat[i][0] rect['z'] = fc_dat[i][1] rect['width'] = fc_dat[i][2] # Or width in R rect['height'] = fc_dat[i][3] # Or height in Z ods['pf_active.coil'][i]['element.0.geometry.geometry_type'] = rect_code else: outline = ods['pf_active.coil'][i]['element.0.geometry.outline'] fdat = fc_dat[i] fdat[4] = -fc_dat[i][4] * numpy.pi / 180.0 fdat[5] = -(fc_dat[i][5] * numpy.pi / 180.0 if fc_dat[i][5] != 0 else numpy.pi / 2.0) outline['r'] = [ fdat[0] - fdat[2] / 2.0 - fdat[3] / 2.0 * numpy.tan((numpy.pi / 2.0 + fdat[5])), fdat[0] - fdat[2] / 2.0 + fdat[3] / 2.0 * numpy.tan((numpy.pi / 2.0 + fdat[5])), fdat[0] + fdat[2] / 2.0 + fdat[3] / 2.0 * numpy.tan((numpy.pi / 2.0 + fdat[5])), fdat[0] + fdat[2] / 2.0 - fdat[3] / 2.0 * numpy.tan((numpy.pi / 2.0 + fdat[5])), ] outline['z'] = [ fdat[1] - fdat[3] / 2.0 - fdat[2] / 2.0 * numpy.tan(-fdat[4]), fdat[1] + fdat[3] / 2.0 - fdat[2] / 2.0 * numpy.tan(-fdat[4]), fdat[1] + fdat[3] / 2.0 + fdat[2] / 2.0 * numpy.tan(-fdat[4]), fdat[1] - fdat[3] / 2.0 + fdat[2] / 2.0 * numpy.tan(-fdat[4]), ] ods['pf_active.coil'][i]['element.0.geometry.geometry_type'] = outline_code for i in range(nc_reg, nc_reg + nc_weird): # This isn't a real geometry_type, so it should trigger the contingency ods['pf_active.coil'][i]['element.0.geometry.geometry_type'] = 99 for i in range(nc_reg + nc_weird, nc): # This one doesn't have geometry_type defined, so the plot overlay will have trouble looking up which type it is outline = ods['pf_active.coil'][i]['element.0.geometry.outline'] outline['r'] = [1.5, 1.6, 1.7, 1.5] outline['z'] = [0.1, 0.3, -0.1, 0] for i in range(nc): # Give the dummy coils identifiers so the plot overlay can try to label them; otherwise the labels aren't tested ods['pf_active.coil'][i]['element.0.identifier'] = f'samp{i}' # Generate some data that are not time homogeneous for i in range(nc_reg): n = (1 + i) * 10 ods['pf_active.coil'][i]['current.data'] = numpy.linspace(0, 1, n) ods['pf_active.coil'][i]['current.time'] = numpy.linspace(0, 1, n) return ods @add_to_ODS def magnetics(ods): """ Adds fake magnetic probe locations This method operates in place :param ods: ODS instance :return: ODS instance with fake magnetics hardware information added """ from omas import load_omas_json pr = load_omas_json(omas_dir + 'samples/sample_magnetics_ods.json', consistency_check=False)['magnetics'] ods['magnetics'].update(pr) return ods @add_to_ODS def thomson_scattering(ods, nc=10): """ Adds fake Thomson scattering channel locations This method operates in place :param ods: ODS instance :param nc: Number of channels to add. :return: ODS instance with fake Thomson hardware information added """ r = numpy.linspace(1.935, 1.945, nc) z = numpy.linspace(-0.7, 0.2, nc) for i in range(nc): ch = ods['thomson_scattering.channel'][i] ch['identifier'] = 'F_TS_{:02d}'.format(i) # F for fake ch['name'] = 'Fake Thomson channel for testing {}'.format(i) ch['position.phi'] = 6.5 # This angle in rad should look bad to someone who doesn't notice the Fake labels ch['position.r'] = r[i] ch['position.z'] = z[i] ods['thomson_scattering.time'] = [0] return ods @add_to_ODS def charge_exchange(ods, nc=10): """ Adds fake CER channel locations This method operates in-place :param ods: ODS instance :param nc: Number of channels to add :return: ODS instance with fake CER hardware information added """ r = numpy.linspace(1.4, 2.2, nc) z = numpy.linspace(0.05, -0.07, nc) for i in range(nc): ch = ods['charge_exchange.channel'][i] ch['identifier'] = 'FAKE_CER_{:02d}'.format(i) # F for fake ch['name'] = 'Fake CER channel for testing {}'.format(i) for x in ['r', 'z', 'phi']: ch['position'][x]['time'] = numpy.array([0]) ch['position.phi.data'] = numpy.array([6.5]) ch['position.r.data'] = numpy.array([r[i]]) ch['position.z.data'] = numpy.array([z[i]]) ods['charge_exchange.time'] = [0.0] return ods @add_to_ODS def interferometer(ods): """ Adds fake interferometer locations This method operates in place :param ods: ODS instance :return: ODS instance with fake interferometer hardware information addedd """ ods['interferometer.channel.0.identifier'] = 'FAKE horz. interf.' r0 = ods['interferometer.channel.0.line_of_sight'] r0['first_point.phi'] = r0['second_point.phi'] = 225 * (-numpy.pi / 180) r0['first_point.r'], r0['second_point.r'] = 3.0, 0.8 r0['first_point.z'] = r0['second_point.z'] = 0.0 i = 0 ods['interferometer.channel'][i + 1]['identifier'] = 'FAKE vert. interf.' los = ods['interferometer.channel'][i + 1]['line_of_sight'] los['first_point.phi'] = los['second_point.phi'] = 240 * (-numpy.pi / 180) los['first_point.r'] = los['second_point.r'] = 1.48 los['first_point.z'], los['second_point.z'] = -1.8, 1.8 for j in range(len(ods['interferometer.channel'])): ch = ods['interferometer.channel'][j] ch['line_of_sight.third_point'] = copy.deepcopy(ch['line_of_sight.first_point']) ods['interferometer.time'] = [0] return ods @add_to_ODS def bolometer(ods, nc=10): """ Adds fake bolometer chord locations This method operates in place :param ods: ODS instance :param nc: 10 # Number of fake channels to make up for testing :return: ODS instance with fake bolometer hardware information added """ angles = numpy.pi + numpy.linspace(-numpy.pi / 4.0, numpy.pi / 4.0, nc) # FAKE origin for the FAKE bolometer fan r0 = 2.5 z0 = 0.05 for i in range(nc): ch = ods['bolometer.channel'][i]['line_of_sight'] ch['first_point.r'] = r0 ch['first_point.z'] = z0 + 0.001 * i ch['second_point.r'] = ch['first_point.r'] + numpy.cos(angles[i]) ch['second_point.z'] = ch['first_point.z'] + numpy.sin(angles[i]) ods['bolometer.channel'][i]['identifier'] = 'fake bolo {}'.format(i) ods['bolometer.channel'][nc - 1]['identifier'] = 'bolo fan 2 fake' # This tests separate colors per fan in overlay ods['bolometer.time'] = [0] return ods @add_to_ODS def gas_injection(ods): """ Adds fake gas injection locations This method operates in place :param ods: ODS instance :return: ODS instance with fake gas injection hardware information added """ imas_version = getattr(ods, 'imas_version', None) separate_valves = imas_version is not None and compare_version(imas_version, "3.34.0") >= 0 ods['gas_injection.time'] = [0] ip = 0 iv = 0 ods[f'gas_injection.pipe.{ip}.name'] = 'FAKE_GAS_A' ods[f'gas_injection.pipe.{ip}.exit_position.r'] = 2.25 ods[f'gas_injection.pipe.{ip}.exit_position.z'] = 0.0 ods[f'gas_injection.pipe.{ip}.exit_position.phi'] = 6.5 if separate_valves: ods[f'gas_injection.pipe.{ip}.valve_indices'] = [iv] ods[f'gas_injection.valve.{iv}.name'] = 'FAKE_GAS_VALVE_A' ods[f'gas_injection.valve.{iv}.identifier'] = 'FAKE_GAS_VALVE_A' ods[f'gas_injection.valve.{iv}.pipe_indices'] = [ip] else: ods[f'gas_injection.pipe.{ip}.valve.0.identifier'] = 'FAKE_GAS_VALVE_A' ods['gas_injection.pipe.1.name'] = 'FAKE_GAS_B' ods['gas_injection.pipe.1.exit_position.r'] = 1.65 ods['gas_injection.pipe.1.exit_position.z'] = 1.1 ods['gas_injection.pipe.1.exit_position.phi'] = 6.5 ods['gas_injection.pipe.1.second_point.r'] = 1.63 ods['gas_injection.pipe.1.second_point.z'] = 1.08 ods['gas_injection.pipe.1.second_point.phi'] = 6.5 if separate_valves: ods['gas_injection.pipe.1.valve_indices'] = [1] ods['gas_injection.valve.1.name'] = 'FAKE_GAS_VALVE_B' ods['gas_injection.valve.1.identifier'] = 'FAKE_GAS_VALVE_B' ods['gas_injection.valve.1.pipe_indices'] = [1] else: ods['gas_injection.pipe.1.valve.0.identifier'] = 'FAKE_GAS_VALVE_B' ods['gas_injection.pipe.2.name'] = 'FAKE_GAS_C' ods['gas_injection.pipe.2.exit_position.r'] = 1.65 ods['gas_injection.pipe.2.exit_position.z'] = 1.1 ods['gas_injection.pipe.2.exit_position.phi'] = 6.5 ods['gas_injection.pipe.2.second_point.phi'] = 6.5 if separate_valves: ods['gas_injection.pipe.2.valve_indices'] = [2] ods['gas_injection.valve.2.name'] = 'FAKE_GAS_VALVE_C' ods['gas_injection.valve.2.identifier'] = 'FAKE_GAS_VALVE_C' ods['gas_injection.valve.2.pipe_indices'] = [2] else: ods['gas_injection.pipe.2.valve.0.identifier'] = 'FAKE_GAS_VALVE_C' # This one is at the same R,Z as FAKE_GAS_B, but it doesn't have a second point defined; this supports testing. ods['gas_injection.pipe.3.name'] = 'FAKE_GAS_D' ods['gas_injection.pipe.3.exit_position.r'] = 2.1 ods['gas_injection.pipe.3.exit_position.z'] = -0.6 if separate_valves: ods['gas_injection.pipe.3.valve_indices'] = [3, 4] ods['gas_injection.valve.3.name'] = 'FAKE_GAS_VALVE_B' ods['gas_injection.valve.3.identifier'] = 'FAKE_GAS_VALVE_B' ods['gas_injection.valve.3.pipe_indices'] = [3] else: ods['gas_injection.pipe.3.valve.0.identifier'] = 'FAKE_GAS_VALVE_D' # This one deliberately doesn't have a phi angle defined, for testing purposes. # Add a second inlet to GASD; let's pretend that there is a branch after the valve ods['gas_injection.pipe.4.name'] = 'FAKE_GAS_D_SECOND_INLET' ods['gas_injection.pipe.4.exit_position.r'] = 2.15 ods['gas_injection.pipe.4.exit_position.z'] = -0.65 if separate_valves: ods['gas_injection.pipe.4.valve_indices'] = [3] else: ods['gas_injection.pipe.3.valve.0.identifier'] = 'FAKE_GAS_VALVE_D' return ods @add_to_ODS def langmuir_probes(ods): """ Adds fake Langmuir probe locations This method operates in place :param ods: ODS instance :return: ODS instance with fake Langmuir probe hardware information added """ ods['langmuir_probes.time'] = numpy.array([0]) ods['langmuir_probes.embedded.0.identifier'] = 0 ods['langmuir_probes.embedded.0.name'] = 'p1' ods['langmuir_probes.embedded.0.position.r'] = 0.9 ods['langmuir_probes.embedded.0.position.z'] = 0.1 ods['langmuir_probes.embedded.0.position.phi'] = 0 ods['langmuir_probes.embedded.1.identifier'] = -1 ods['langmuir_probes.embedded.1.name'] = 'p23' ods['langmuir_probes.embedded.1.position.r'] = 0.9 ods['langmuir_probes.embedded.1.position.z'] = -0.9 ods['langmuir_probes.embedded.1.position.phi'] = numpy.nan ods['langmuir_probes.embedded.2.identifier'] = -2 ods['langmuir_probes.embedded.2.name'] = 'blah' ods['langmuir_probes.embedded.2.position.r'] = 1.5 ods['langmuir_probes.embedded.2.position.z'] = -1.25 ods['langmuir_probes.embedded.2.position.phi'] = numpy.nan ods['langmuir_probes.embedded.3.identifier'] = -3 ods['langmuir_probes.embedded.3.name'] = 'donkey!' ods['langmuir_probes.embedded.3.position.r'] = 1.525 ods['langmuir_probes.embedded.3.position.z'] = -1.25 ods['langmuir_probes.embedded.3.position.phi'] = numpy.nan ods['langmuir_probes.embedded.4.identifier'] = -4 ods['langmuir_probes.embedded.4.name'] = 'zzz' ods['langmuir_probes.embedded.4.position.r'] = 1.4 ods['langmuir_probes.embedded.4.position.z'] = 1.4 ods['langmuir_probes.embedded.4.position.phi'] = numpy.pi ods['langmuir_probes.embedded.5.identifier'] = -5 ods['langmuir_probes.embedded.5.name'] = "it's just a test" ods['langmuir_probes.embedded.5.position.r'] = 2.45 ods['langmuir_probes.embedded.5.position.z'] = 0.25 ods['langmuir_probes.embedded.5.position.phi'] = numpy.nan return ods @add_to_ODS def wall(ods): """ Adds fake wall data This method operates in in-place :param ods: ODS instance :return: ODS instance with added wall description """ ods['wall.time'] = [0.0] ods['wall.description_2d[0].limiter.type.description'] = 'first wall' ods['wall.description_2d[0].limiter.type.index'] = 0 ods['wall.description_2d[0].limiter.type.name'] = 'first_wall' ods['wall.description_2d[0].limiter.unit[0].outline.r'] = [ # fmt: off 1.0, 1.0, 1.3, 1.4, 1.6, 2.15, 2.35, 2.35, 2.15, 1.800, 1.350, 1.35, 1.10, 1.00, 1.0 # fmt: on ] ods['wall.description_2d[0].limiter.unit[0].outline.z'] = [ # fmt: off 0.0, 1.4, 1.4, 1.3, 1.1, 1.00, 0.50, -0.5, -1.0, -1.25, -1.25, -1.4, -1.4, -1.3, 0.0 # fmt: on ] return ods @add_to_ODS def pulse_schedule(ods): """ Adds fake control target data to support testing This method operates in in-place :param ods: ODS instance :return: ODS instance with added pulse schedule """ def add_position_control(ods_): """Adds sample data for the position control subset""" # These data are sampled from DIII-D#161558 at the following times: t = numpy.array([0.1, 0.52, 0.99, 1.29, 1.46, 2.01, 3.91, 5.97, 6.6, 6.9]) # s bdry = ods_['pulse_schedule.position_control.boundary_outline'] bdry[0]['r.reference'] = numpy.array([2.31, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.27, 2.25, 2.25]) # m bdry[0]['z.reference'] = numpy.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) bdry[1]['r.reference'] = numpy.array([2.21, 2.17, 2.17, 2.16, 2.16, 2.15, 2.16, 2.15, 2.12, 2.12]) bdry[1]['z.reference'] = numpy.array([0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43, 0.43]) bdry[2]['r.reference'] = numpy.array([1.9, 1.9, 1.9, 1.88, 1.87, 1.87, 1.87, 1.87, 1.83, 1.83]) bdry[2]['z.reference'] = numpy.array([0.81, 0.81, 0.81, 0.78, 0.76, 0.76, 0.76, 0.76, 0.69, 0.69]) bdry[3]['r.reference'] = numpy.array([1.52, 1.52, 1.52, 1.52, 1.52, 1.52, 1.52, 1.52, 1.52, 1.52]) bdry[3]['z.reference'] = numpy.array([0.84, 0.91, 0.91, 0.87, 0.84, 0.83, 0.83, 0.83, 1.35, 1.35]) bdry[4]['r.reference'] = numpy.array([1.44, 1.39, 1.39, 1.41, 1.43, 1.43, 1.43, 1.43, 1.1, 1.1]) bdry[4]['z.reference'] = numpy.array([0.8, 0.86, 0.86, 0.83, 0.81, 0.81, 0.81, 0.81, 1.21, 1.21]) bdry[5]['r.reference'] = numpy.array([1.32, 1.28, 1.28, 1.3, 1.31, 1.32, 1.32, 1.32, 1.07, 1.07]) bdry[5]['z.reference'] = numpy.array([0.73, 0.77, 0.77, 0.75, 0.74, 0.73, 0.73, 0.73, 0.99, 0.99]) bdry[6]['r.reference'] = numpy.array([0.92, 1.16, 1.16, 1.16, 1.17, 1.17, 1.17, 1.17, 0.92, 0.92]) bdry[6]['z.reference'] = numpy.array([0.0, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.0, 0.0]) bdry[7]['r.reference'] = numpy.array([1.15, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.2, 1.2]) bdry[7]['z.reference'] = numpy.array([0.5, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.16, 0.5, 0.5]) bdry[8]['r.reference'] = numpy.array([1.08, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.1, 1.08, 1.08]) bdry[8]['z.reference'] = numpy.array([-0.5, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.16, -0.5, -0.5]) bdry[9]['r.reference'] = numpy.array([1.23, 1.12, 1.12, 1.14, 1.14, 1.14, 1.14, 1.14, 1.23, 1.23]) bdry[9]['z.reference'] = numpy.array([-0.78, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.79, -0.79]) bdry[10]['r.reference'] = numpy.array([1.94, 1.18, 1.18, 1.21, 1.22, 1.22, 1.22, 1.22, 1.92, 1.92]) bdry[10]['z.reference'] = numpy.array([-0.88, -0.81, -0.81, -0.79, -0.79, -0.79, -0.79, -0.79, -0.85, -0.85]) bdry[11]['r.reference'] = numpy.array([2.23, 1.89, 1.89, 1.89, 1.89, 1.89, 1.89, 1.89, 2.18, 2.18]) bdry[11]['z.reference'] = numpy.array([-0.43, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.8, -0.43, -0.43]) for i in range(12): bdry[i]['r.reference_type'] = bdry[i]['z.reference_type'] = 1 bdry[i]['r.reference_name'] = bdry[i]['z.reference_name'] = 'seg{}'.format(i) strk = ods_['pulse_schedule.position_control.strike_point'] strk[0]['r.reference'] = numpy.array([numpy.nan, 1.35, 1.35, 1.35, 1.35, 1.35, 1.35, 1.35, numpy.nan, numpy.nan]) strk[0]['z.reference'] = numpy.array([numpy.nan, -1.35, -1.35, -1.35, -1.35, -1.35, -1.35, -1.35, numpy.nan, numpy.nan]) strk[1]['r.reference'] = numpy.array([numpy.nan, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02, 1.02, numpy.nan, numpy.nan]) strk[1]['z.reference'] = numpy.array([numpy.nan, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, -1.2, numpy.nan, numpy.nan]) for i in range(2): strk[i]['r.reference_type'] = strk[i]['z.reference_type'] = 1 strk[i]['r.reference_name'] = strk[i]['z.reference_name'] = 'strk{}'.format(i) xpt = ods_['pulse_schedule.position_control.x_point'] xpt[0]['r.reference'] = numpy.array([1.1, 1.34, 1.34, 1.43, 1.43, 1.43, 1.43, 1.43, 1.13, 1.13]) xpt[0]['z.reference'] = numpy.array([-1.6, -1.21, -1.21, -1.15, -1.15, -1.15, -1.15, -1.15, -1.41, -1.41]) xpt[1]['r.reference'] = numpy.array([numpy.nan] * len(t)) xpt[1]['z.reference'] = numpy.array([numpy.nan] * len(t)) for i in range(2): xpt[i]['r.reference_type'] = xpt[i]['z.reference_type'] = 1 xpt[i]['r.reference_name'] = xpt[i]['z.reference_name'] = 'strk{}'.format(i) ods_['pulse_schedule.position_control.time'] = t ods_['pulse_schedule.time'] = t add_position_control(ods) return ods @add_to_ODS def ec_launchers(ods, ngyros=2, ntimes=6): """ Adds fake ec launchers data to support testing This method operates in in-place :param ods: ODS instance :param ngyros: number of gyrotrons :param ntimes: number of times :return: ODS instance with added ec_launchers """ times = numpy.linspace(0.0, 1.0, ntimes) ones = numpy.ones(ntimes) ods['ec_launchers.ids_properties.homogeneous_time'] = 1 for gyro in range(ngyros): ods['ec_launchers']['time'] = times ods['ec_launchers']['beam'][gyro]['time'] = times ods['ec_launchers']['beam'][gyro]['identifier'] = 'GYRO_' + str(gyro) ods['ec_launchers']['beam'][gyro]['frequency']['data'] = ones * 110e9 ods['ec_launchers']['beam'][gyro]['frequency']['time'] = times ods['ec_launchers']['beam'][gyro]['launching_position']['phi'] = 0.0 * ones ods['ec_launchers']['beam'][gyro]['launching_position']['r'] = 2.4 * ones ods['ec_launchers']['beam'][gyro]['launching_position']['z'] = 0.68 * ones ods['ec_launchers']['beam'][gyro]['mode'] = -1 ods['ec_launchers']['beam'][gyro]['power_launched']['data'] = 0.5e6 * (ones - 0.5 * numpy.cos(2 * numpy.pi * times + gyro / ngyros)) ods['ec_launchers']['beam'][gyro]['power_launched']['time'] = times ods['ec_launchers']['beam'][gyro]['steering_angle_pol'] = 0.61 * ones ods['ec_launchers']['beam'][gyro]['steering_angle_tor'] = 0.0 * ones return ods @add_to_ODS def nbi(ods, nunits=2, ntimes=6): """ Adds fake nbi data to support testing This method operates in in-place :param ods: ODS instance :param nunits: number of times :param ntimes: number of times :return: ODS instance with added nbi """ times = numpy.linspace(0.0, 1.0, ntimes) ones = numpy.ones(ntimes) ods['nbi.time'] = times ods['nbi.ids_properties.homogeneous_time'] = 1 for unit in range(nunits): ods['nbi']['unit'][unit]['beam_current_fraction']['data'] = [0.27032773 * ones, 0.14438479 * ones, 0.07613747 * ones] ods['nbi']['unit'][unit]['beam_current_fraction']['time'] = times ods['nbi']['unit'][unit]['beam_power_fraction']['data'] = [0.36067036 * ones, 0.09631886 * ones, 0.03386079 * ones] ods['nbi']['unit'][unit]['beam_power_fraction']['time'] = times ods['nbi']['unit'][unit]['beamlets_group'][0]['angle'] = -0 ods['nbi']['unit'][unit]['beamlets_group'][0]['direction'] = 1 ods['nbi']['unit'][unit]['beamlets_group'][0]['divergence_component'][0]['horizontal'] = 0.00873 ods['nbi']['unit'][unit]['beamlets_group'][0]['divergence_component'][0]['particles_fraction'] = 1.0 ods['nbi']['unit'][unit]['beamlets_group'][0]['divergence_component'][0]['vertical'] = 0.227 ods['nbi']['unit'][unit]['beamlets_group'][0]['focus']['focal_length_horizontal'] = 1e31 ods['nbi']['unit'][unit]['beamlets_group'][0]['focus']['focal_length_vertical'] = 10.0 ods['nbi']['unit'][unit]['beamlets_group'][0]['position']['phi'] = -0.773 ods['nbi']['unit'][unit]['beamlets_group'][0]['position']['r'] = 8.11 ods['nbi']['unit'][unit]['beamlets_group'][0]['position']['z'] = 0.0 ods['nbi']['unit'][unit]['beamlets_group'][0]['tangency_radius'] = 1.146 ods['nbi']['unit'][unit]['beamlets_group'][0]['width_vertical'] = 0.48 ods['nbi']['unit'][unit]['beamlets_group'][0]['width_horizontal'] = 0.1 ods['nbi']['unit'][unit]['identifier'] = 'beam_' + str(unit) ods['nbi']['unit'][unit]['energy']['data'] = 80e3 * ones ods['nbi']['unit'][unit]['energy']['time'] = times ods['nbi']['unit'][unit]['power_launched']['data'] = 2.0e6 * (ones - 0.5 * numpy.cos(2 * numpy.pi * times + unit / nunits)) ods['nbi']['unit'][unit]['power_launched']['time'] = times ods['nbi']['unit'][unit]['species']['a'] = 2.0 ods['nbi']['unit'][unit]['species']['z_n'] = 1.0 return ods