Source code for omfit_classes.fluxSurface

try:
    # framework is running
    from .startup_choice import *
except ImportError as _excp:
    # class is imported by itself
    if (
        'attempted relative import with no known parent package' in str(_excp)
        or 'No module named \'omfit_classes\'' in str(_excp)
        or "No module named '__main__.startup_choice'" in str(_excp)
    ):
        from startup_choice import *
    else:
        raise

import omfit_classes.utils_math
from omfit_classes.utils_math import (
    parabola,
    paraboloid,
    parabolaMaxCycle,
    contourPaths,
    reverse_enumerate,
    RectBivariateSplineNaN,
    deriv,
    line_intersect,
    interp1e,
    centroid,
    pack_points,
)
from omfit_classes.utils_base import printw

import omas
import numpy as np
from matplotlib.path import Path
from scipy import integrate, interpolate, constants
from omas import ODS, omas_environment

__all__ = [
    'fluxSurfaces',
    'fluxSurfaceTraces',
    'boundaryShape',
    'BoundaryShape',
    'fluxGeo',
    'rz_miller',
    'miller_derived',
]


[docs]class fluxSurfaceTraces(SortedDict):
[docs] def deploy(self, filename=None, frm='arrays'): import omfit_classes.namelist if filename is None: printi('Specify filename to deploy fluxSurfaceTraces') return if frm.lower() == 'namelist': tmp = NamelistFile() tmp.filename = filename nn = namelist.NamelistName() nn['Nsurf'] = len(self) npts = [] for k in self: npts.append(len(self[k]['R'])) nn['Npoints'] = npts tmp['dimensions'] = nn for k in self: nn = namelist.NamelistName() nn['psi'] = self[k]['psi'] nn['q'] = self[k]['q'] nn['P'] = self[k]['P'] nn['R'] = self[k]['R'] nn['Z'] = self[k]['Z'] nn['l'] = np.hstack((0, np.sqrt(np.diff(self[k]['R']) ** 2 + np.diff(self[k]['Z']) ** 2))) tmp['flux_' + str(k)] = nn tmp.save() else: R = np.array([]) Z = np.array([]) l = np.array([]) psi = np.array([]) q = np.array([]) P = np.array([]) npts = np.array([]) for k in self: npts = np.hstack((npts, len(self[k]['R']))) psi = np.hstack((psi, self[k]['psi'])) q = np.hstack((q, self[k]['q'])) P = np.hstack((P, self[k]['P'])) l = np.hstack((l, np.hstack((0, np.sqrt(np.diff(self[k]['R']) ** 2 + np.diff(self[k]['Z']) ** 2))))) Z = np.hstack((Z, self[k]['Z'])) R = np.hstack((R, self[k]['R'])) with open(filename, 'w') as f: f.write( ''' #line (1) number of flux surfaces #line (2) number of points per flux surface #line (3) psi for each flux surface #line (4) q for each flux surface #line (5) pressure for each flux surface #line (6) R for each flux surface #line (7) Z for each flux surface #line (8) l for each flux surface '''.strip() + '\n' ) savetxt(f, np.array([len(self)]), fmt='%d') savetxt(f, np.reshape(npts, (1, -1)), fmt='%d') savetxt(f, np.reshape(psi, (1, -1))) savetxt(f, np.reshape(q, (1, -1))) savetxt(f, np.reshape(P, (1, -1))) savetxt(f, np.vstack((R, Z, l)))
[docs] def load(self, filename): with open(filename, 'r') as f: lines = f.readlines() k = 9 n = np.fromstring(lines[k], dtype=int, sep=' ') k += 1 psi = np.fromstring(lines[k], dtype=float, sep=' ') k += 1 q = np.fromstring(lines[k], dtype=float, sep=' ') k += 1 P = np.fromstring(lines[k], dtype=float, sep=' ') k += 1 r = np.fromstring(lines[k], dtype=float, sep=' ') k += 1 z = np.fromstring(lines[k], dtype=float, sep=' ') k += 1 l = np.fromstring(lines[k], dtype=float, sep=' ') k = 0 for start, stop in zip(*(np.cumsum(n) - n, np.cumsum(n))): self[k] = SortedDict() self[k]['psi'] = psi[k] self[k]['q'] = q[k] self[k]['P'] = P[k] self[k]['R'] = r[start:stop] self[k]['Z'] = z[start:stop] self[k]['l'] = l[start:stop] k = k + 1 return self
[docs]@omfit_classes.utils_math.np_ignored def fluxGeo(inputR, inputZ, lcfs=False, doPlot=False): ''' Calculate geometric properties of a single flux surface :param inputR: R points :param inputZ: Z points :param lcfs: whether this is the last closed flux surface (for sharp feature of x-points) :param doPlot: plot geometric measurements :return: dictionary with geometric quantities ''' # Cast as arrays inputR = np.array(inputR) inputZ = np.array(inputZ) # Make sure the flux surfaces are closed if inputR[0] != inputR[1]: inputRclose = np.hstack((inputR, inputR[0])) inputZclose = np.hstack((inputZ, inputZ[0])) else: inputRclose = inputR inputZclose = inputZ inputR = inputR[:-1] inputR = inputZ[:-1] # This is the result geo = SortedDict() # These are the extrema indices imaxr = np.argmax(inputR) iminr = np.argmin(inputR) imaxz = np.argmax(inputZ) iminz = np.argmin(inputZ) # Test for lower null lonull = False # Find the slope on either side of min(z) ind1 = (iminz + 1) % len(inputZ) ind2 = (iminz + 2) % len(inputZ) loslope1 = (np.diff(inputZ[[ind1, ind2]]) / np.diff(inputR[[ind1, ind2]]))[0] ind1 = (iminz - 1) % len(inputZ) ind2 = (iminz - 2) % len(inputZ) loslope2 = (np.diff(inputZ[[ind1, ind2]]) / np.diff(inputR[[ind1, ind2]]))[0] # If loslope1*loslope2==-1, then it is a perfect x-point, test against -0.5 as a threshold if loslope1 * loslope2 < -0.5 and len(inputZ) > 20: lcfs = lonull = True geo['lonull'] = lonull # Test for upper null upnull = False # Find the slope on either side of max(z) ind1 = (imaxz + 1) % len(inputZ) ind2 = (imaxz + 2) % len(inputZ) upslope1 = (np.diff(inputZ[[ind1, ind2]]) / np.diff(inputR[[ind1, ind2]]))[0] ind1 = (imaxz - 1) % len(inputZ) ind2 = (imaxz - 2) % len(inputZ) upslope2 = (np.diff(inputZ[[ind1, ind2]]) / np.diff(inputR[[ind1, ind2]]))[0] # If upslope1*upslope2==-1, then it is a perfect x-point, test against -0.5 as a threshold if upslope1 * upslope2 < -0.5 and len(inputZ) > 20: lcfs = upnull = True geo['upnull'] = upnull # Find the extrema points if lcfs: r_at_max_z, max_z = inputR[imaxz], inputZ[imaxz] r_at_min_z, min_z = inputR[iminz], inputZ[iminz] z_at_max_r, max_r = inputZ[imaxr], inputR[imaxr] z_at_min_r, min_r = inputZ[iminr], inputR[iminr] else: r_at_max_z, max_z = parabolaMaxCycle(inputR, inputZ, imaxz, bounded='max') r_at_min_z, min_z = parabolaMaxCycle(inputR, inputZ, iminz, bounded='min') z_at_max_r, max_r = parabolaMaxCycle(inputZ, inputR, imaxr, bounded='max') z_at_min_r, min_r = parabolaMaxCycle(inputZ, inputR, iminr, bounded='min') dl = np.sqrt(np.ediff1d(inputR, to_begin=0) ** 2 + np.ediff1d(inputZ, to_begin=0) ** 2) geo['R'] = 0.5 * (max_r + min_r) geo['Z'] = 0.5 * (max_z + min_z) geo['a'] = 0.5 * (max_r - min_r) geo['eps'] = geo['a'] / geo['R'] geo['per'] = np.sum(dl) geo['surfArea'] = 2 * np.pi * np.sum(inputR * dl) geo['kap'] = 0.5 * ((max_z - min_z) / geo['a']) geo['kapu'] = (max_z - z_at_max_r) / geo['a'] geo['kapl'] = (z_at_max_r - min_z) / geo['a'] geo['delu'] = (geo['R'] - r_at_max_z) / geo['a'] geo['dell'] = (geo['R'] - r_at_min_z) / geo['a'] geo['delta'] = 0.5 * (geo['dell'] + geo['delu']) geo['zoffset'] = z_at_max_r # squareness (Luce,T.C. PPCF 55.9 2013 095009) for quadrant in ['zetaou', 'zetaol', 'zetaiu', 'zetail']: if quadrant == 'zetaou': R0 = r_at_max_z Z0 = z_at_max_r r = inputR - R0 z = inputZ - Z0 A = max_r - R0 B = max_z - Z0 th = 3 * np.pi / 2.0 + np.arctan(B / A) i = np.where((r <= 0) | (z <= 0)) elif quadrant == 'zetaol': R0 = r_at_min_z Z0 = z_at_max_r r = inputR - R0 z = inputZ - Z0 A = max_r - R0 B = -(Z0 - min_z) th = 3 * np.pi / 2.0 + np.arctan(B / A) i = np.where((r <= 0) | (z >= 0)) elif quadrant == 'zetaiu': R0 = r_at_max_z Z0 = z_at_max_r r = inputR - R0 z = inputZ - Z0 A = -(R0 - min_r) B = max_z - Z0 th = 1 * np.pi / 2.0 + np.arctan(B / A) i = np.where((r >= 0) | (z <= 0)) elif quadrant == 'zetail': R0 = r_at_min_z Z0 = z_at_max_r r = inputR - R0 z = inputZ - Z0 A = -(R0 - min_r) B = -(Z0 - min_z) th = 1 * np.pi / 2.0 + np.arctan(B / A) i = np.where((r >= 0) | (z >= 0)) # remove points in other quadrants r[i] = np.nan z[i] = np.nan if np.sum(~np.isnan(r)) < 2 or np.sum(~np.isnan(z)) < 2: continue # rotate points by 45 degrees r1 = r * np.cos(th) + z * np.sin(th) z1 = -r * np.sin(th) + z * np.cos(th) # remove points in lower half midplane r1[np.where(z1 < 0)] = np.nan z1[np.where(z1 < 0)] = np.nan if np.sum(~np.isnan(r1)) < 2 or np.sum(~np.isnan(z1)) < 2: continue # fit a parabola to find location of max shifted-rotated z ix = np.nanargmin(abs(r1)) try: ixp = np.mod(np.array([-1, 0, 1]) + ix, len(r1)) a, b, D = parabola(r1[ixp], z1[ixp]) except np.linalg.LinAlgError: D = interp1e(r1[~np.isnan(r1)], z1[~np.isnan(z1)])(0) # ellipsis C = np.sqrt((A * np.cos(np.pi / 4.0)) ** 2 + (B * np.sin(np.pi / 4.0)) ** 2) # square E = np.sqrt(A**2 + B**2) # squareness geo[quadrant] = (D - C) / (E - C) # Testing if doPlot: t = arctan(z / r * np.sign(A) * np.sign(B)) pyplot.plot(R0 + r, Z0 + z) pyplot.gca().set_aspect('equal') pyplot.plot(R0 + D * np.sin(-th), Z0 + D * np.cos(-th), 'o') pyplot.plot(R0 + np.array([0, A]), Z0 + np.array([0, B])) C = np.sqrt((np.cos(-th) / B) ** 2 + (np.sin(-th) / A) ** 2) pyplot.plot(R0 + A * np.cos(t), Z0 + B * np.sin(t), '--') pyplot.plot(R0 + A, Z0 + B, 'd') pyplot.plot(R0 + A * np.cos(np.pi / 4.0), Z0 + B * np.sin(np.pi / 4.0), 's') pyplot.plot(R0 + np.array([0, A, A, 0, 0]), Z0 + np.array([0, 0, B, B, 0]), 'k') pyplot.gca().set_frame_on(False) def rmin_rmax_at_z(r, z, z_c): tmp = line_intersect(np.array([r, z]).T, np.array([[np.min(r), np.max(r)], [z_c, z_c]]).T) return tmp[0, 0], tmp[1, 0] r_c, z_c = centroid(inputR, inputZ) if np.allclose(inputRclose, np.mean(inputRclose)) and np.allclose(inputZclose, np.mean(inputZclose)): r_m, r_p = np.mean(inputRclose), np.mean(inputRclose) else: r_m, r_p = rmin_rmax_at_z(inputRclose, inputZclose, z_c) geo['R_centroid'] = r_c geo['Z_centroid'] = z_c # Also known as R_min, R_max in the midplane geo['Rmin_centroid'] = r_m geo['Rmax_centroid'] = r_p rmaj = (r_p + r_m) / 2.0 rmin = (r_p - r_m) / 2.0 r_s = rmaj + rmin * np.cos(0.25 * np.pi + np.arcsin(geo['delta']) / np.sqrt(2.0)) z_p, z_m = rmin_rmax_at_z(inputZ, inputR, r_s) geo['zeta'] = -0.25 * np.pi + 0.5 * (np.arcsin((z_p - z_c) / (geo['kap'] * rmin)) + np.arcsin((z_c - z_m) / (geo['kap'] * rmin))) return geo
[docs]class fluxSurfaces(SortedDict): """ Trace flux surfaces and calculate flux-surface averaged and geometric quantities Inputs can be tables of PSI and Bt or an OMFITgeqdsk file """ def __init__( self, Rin=None, Zin=None, PSIin=None, Btin=None, Rcenter=None, F=None, P=None, rlim=None, zlim=None, gEQDSK=None, resolution=0, forceFindSeparatrix=True, levels=None, map=None, maxPSI=1.0, calculateAvgGeo=True, cocosin=None, quiet=False, **kw, ): r""" :param Rin: (ignored if gEQDSK!=None) array of the R grid mesh :param Zin: (ignored if gEQDSK!=None) array of the Z grid mesh :param PSIin: (ignored if gEQDSK!=None) PSI defined on the R/Z grid :param Btin: (ignored if gEQDSK!=None) Bt defined on the R/Z grid :param Rcenter: (ignored if gEQDSK!=None) Radial location where the vacuum field is defined ( B0 = F[-1] / Rcenter) :param F: (ignored if gEQDSK!=None) F-poloidal :param P: (ignored if gEQDSK!=None) pressure :param rlim: (ignored if gEQDSK!=None) array of limiter r points (used for SOL) :param zlim: (ignored if gEQDSK!=None) array of limiter z points (used for SOL) :param gEQDSK: OMFITgeqdsk file or ODS :param resolution: if `int` the original equilibrium grid will be multiplied by (resolution+1), if `float` the original equilibrium grid is interpolated to that resolution (in meters) :param forceFindSeparatrix: force finding of separatrix even though this may be already available in the gEQDSK file :param levels: levels in normalized psi. Can be an array ranging from 0 to 1, or the number of flux surfaces :param map: array ranging from 0 to 1 which will be used to set the levels, or 'rho' if flux surfaces are generated based on gEQDSK :param maxPSI: (default 0.9999) :param calculateAvgGeo: Boolean which sets whether flux-surface averaged and geometric quantities are automatically calculated :param quiet: Verbosity level :param \**kw: overwrite key entries >> OMFIT['test']=OMFITgeqdsk(OMFITsrc+'/../samples/g133221.01000') >> # copy the original flux surfaces >> flx=copy.deepcopy(OMFIT['test']['fluxSurfaces']) >> # to use PSI >> mapping=None >> # to use RHO instead of PSI >> mapping=OMFIT['test']['RHOVN'] >> # trace flux surfaces >> flx.findSurfaces(np.linspace(0,1,100),mapping=map) >> # to increase the accuracy of the flux surface tracing (higher numbers --> smoother surfaces, more time, more memory) >> flx.changeResolution(2) >> # plot >> flx.plot() """ # initialization by ODS if isinstance(gEQDSK, ODS): return self.from_omas(gEQDSK) from omas import define_cocos self.quiet = quiet self.forceFindSeparatrix = forceFindSeparatrix self.calculateAvgGeo = calculateAvgGeo self.levels = levels self.resolution = resolution if gEQDSK is None: if not self.quiet: printi('Flux surfaces from tables') if cocosin is None: # Eventually this should raise an error but just warn now # raise ValueError("Define cocosin for input equilibrium values") printw("cocosin not defined. Should be specified, but assuming COCOS 1 for now") self.cocosin = 1 else: self.cocosin = cocosin self.Rin = Rin self.Zin = Zin self.PSIin = PSIin self.Btin = Btin self['RCENTR'] = Rcenter if F is not None: self.F = F if P is not None: self.P = P self.sep = None self.open_sep = None self.flx = None self.PSIaxis = None self.forceFindSeparatrix = True self.rlim = rlim self.zlim = zlim else: self.cocosin = gEQDSK.cocos if not self.quiet: printi('Flux surfaces from %dx%d gEQDSK' % (gEQDSK['NW'], gEQDSK['NH'])) self.Rin = np.linspace(0, gEQDSK['RDIM'], gEQDSK['NW']) + gEQDSK['RLEFT'] self.Zin = np.linspace(0, gEQDSK['ZDIM'], gEQDSK['NH']) - gEQDSK['ZDIM'] / 2.0 + gEQDSK['ZMID'] self.PSIin = gEQDSK['PSIRZ'] self.F = gEQDSK['FPOL'] self.P = gEQDSK['PRES'] self.FFPRIM = gEQDSK['FFPRIM'] self.PPRIME = gEQDSK['PPRIME'] self.Btin = gEQDSK['AuxQuantities']['Bt'] self['R0'] = gEQDSK['RMAXIS'] self['Z0'] = gEQDSK['ZMAXIS'] self['RCENTR'] = gEQDSK['RCENTR'] self.sep = np.vstack((gEQDSK['RBBBS'], gEQDSK['ZBBBS'])).T self.open_sep = None self.PSIaxis = gEQDSK['SIMAG'] self.flx = gEQDSK['SIBRY'] self.rlim = gEQDSK['RLIM'] self.zlim = gEQDSK['ZLIM'] # At the end of the following section: # forceFindSeparatrix = None means that existing separatrix is likely to be ok # forceFindSeparatrix = True means that new separtrix should be found # forceFindSeparatrix = False means that old separtrix should be left alone if forceFindSeparatrix is None: psiSep = RectBivariateSplineNaN(self.Zin, self.Rin, self.PSIin).ev(gEQDSK['ZBBBS'], gEQDSK['RBBBS']) cost = np.sqrt(np.var(psiSep)) / abs(self.flx) if cost > 1.0e-2 and self.forceFindSeparatrix is None: self.forceFindSeparatrix = 'check' if cost > 5.0e-2: printi("Normalized variance of PSI at separatrix ['RBBBS'],['ZBBBS'] points is " + format(cost * 100, '6.3g') + '%') self.forceFindSeparatrix = True cost = abs((self.flx - np.mean(psiSep)) / (self.flx - self.PSIaxis)) if cost > 1.0e-2 and self.forceFindSeparatrix is None: self.forceFindSeparatrix = 'check' if cost > 5.0e-2: printi( "Relative error between ['SIBRY'] and average value of PSI at separatrix ['RBBBS'],['ZBBBS'] points is " + format(cost * 100, '6.3g') + '%' ) self.forceFindSeparatrix = True if self.PSIaxis < self.flx: self.flx = np.min(psiSep) if self.PSIaxis > self.flx: self.flx = np.max(psiSep) self._cocos = define_cocos(self.cocosin) # setup level mapping if isinstance(map, str): if map == 'rho' and gEQDSK is not None: self.map = gEQDSK['RHOVN'] if not self.quiet: printi('Levels based on rho ...') else: self.map = None if not self.quiet: printi('Levels based on psi ...') elif map is not None: if not self.quiet: printi('Levels based on user provided map ...') self.map = map else: self.map = None if not self.quiet: printi('Levels based on psi ...') self.maxPSI = maxPSI self.update(kw) self.dynaLoad = True
[docs] @dynaLoad def load(self): self._changeResolution(self.resolution) self._crop() self._findAxis() if self.forceFindSeparatrix is not False: if self.forceFindSeparatrix == 'check': # check if the flux surface at PSI=1 (using the original PSI definition) is actually valid if not len(self._findSurfaces(levels=[1.0])): printi('Forcing find of new separatrix!') self.quiet = False self.forceFindSeparatrix = True if self.forceFindSeparatrix is True: self._findSeparatrix() if self.levels is not None: self.findSurfaces(self.levels)
def _findAxis(self): if not self.quiet: printi('Find magnetic axis ...') if not hasattr(self, 'R'): self._changeResolution(0) # limit search of the axis to a circle centered in the center of the domain if 'R0' not in self or 'Z0' not in self: Raxis = (self.R[0] + self.R[-1]) / 2.0 Zaxis = (self.Z[0] + self.Z[-1]) / 2.0 dmax = (self.R[-1] - self.R[0]) / 2.0 else: Raxis = self['R0'] Zaxis = self['Z0'] dmax = (self.R[-1] - self.R[0]) / 2.0 / 1.5 RR, ZZ = np.meshgrid(self.R - Raxis, self.Z - Zaxis) DD = np.sqrt(RR**2 + ZZ**2) < dmax tmp = self.PSI.copy() tmp[np.where(DD == 0)] = np.nan # figure out sign (fitting paraboloid going inward) ri0 = np.argmin(abs(self.R - Raxis)) zi0 = np.argmin(abs(self.Z - Zaxis)) n = np.min([ri0, zi0, len(self.R) - ri0, len(self.Z) - zi0]) ax = 0 for k in range(1, n)[::-1]: ri = (ri0 + np.array([-k, 0, +k, 0, 0])).astype(int) zi = (zi0 + np.array([0, 0, 0, +k, -k])).astype(int) try: ax, bx, ay, by, c = paraboloid(self.R[ri], self.Z[zi], tmp[zi, ri]) break except np.linalg.LinAlgError: pass if ax > 0: # look for the minimum m = np.nanargmin(tmp) else: # look for the maximum m = np.nanargmax(tmp) Zmi = int(m / self.PSI.shape[1]) Rmi = int(m - Zmi * self.PSI.shape[1]) # pick center points based on the grid self.PSIaxis = self.PSI[Zmi, Rmi] self['R0'] = self.R[Rmi] self['Z0'] = self.Z[Zmi] # fit paraboloid in the vicinity of the grid-based center ri = (Rmi + np.array([-1, 0, +1, 0, 0])).astype(int) zi = (Zmi + np.array([0, 0, 0, +1, -1])).astype(int) ax, bx, ay, by, c = paraboloid(self.R[ri], self.Z[zi], self.PSI[zi, ri]) self['R0_interp'] = -bx / (2 * ax) self['Z0_interp'] = -by / (2 * ay) # forceFindSeparatrix also controls whether PSI on axis should be redefined if self.forceFindSeparatrix is not False: # set as the center value of PSI (based on R0 and Z0) PSIaxis_found = RectBivariateSplineNaN(self.Z, self.R, self.PSI).ev(self['Z0_interp'], self['R0_interp']) if self.PSIaxis is None: self.PSIaxis = self.PSI[Zmi, Rmi] elif self.flx is not None: self.PSI = (self.PSI - PSIaxis_found) / abs(self.flx - PSIaxis_found) * abs(self.flx - self.PSIaxis) + self.PSIaxis # understand sign of the current based on curvature of psi if not hasattr(self, 'sign_Ip'): self.sign_Ip = np.sign(ax) * self._cocos['sigma_Bp'] # tmp[np.isnan(tmp)]=5 # contour(self.Rin,self.Zin,tmp) # pyplot.plot(self['R0'],self['Z0'],'or') # pyplot.plot(self['R0_interp'],self['Z0_interp'],'ob') def _findSurfaces(self, levels, usePSI=False): signTheta = self._cocos['sigma_RpZ'] * self._cocos['sigma_rhotp'] # +! is clockwise if not hasattr(self, 'PSI'): self._changeResolution(self.resolution) if usePSI: levels_psi = np.array(levels) levels = (levels_psi - self.PSIaxis) / ((self.flx - self.PSIaxis) * self.maxPSI) else: levels_psi = np.array(levels) * (self.flx - self.PSIaxis) * self.maxPSI + self.PSIaxis CS = contourPaths(self.R, self.Z, self.PSI, levels_psi) lines = SortedDict() for k, item1 in enumerate(CS): line = [] if levels_psi[k] == self.PSIaxis: # axis line = np.array([self['R0'], self['Z0']]).reshape((1, 2)) elif len(item1): # all others index = np.argsort([len(k1.vertices) for k1 in item1]) if item1[-1] in index: index.insert(0, index.pop(item1[-1])) for k1 in index: path = item1[k1] r = path.vertices[:, 0] z = path.vertices[:, 1] if np.any(np.isnan(r * z)): continue r[0] = r[-1] = (r[0] + r[-1]) * 0.5 z[0] = z[-1] = (z[0] + z[-1]) * 0.5 t = np.unwrap(np.arctan2(z - self['Z0'], r - self['R0'])) t -= np.mean(t) l = np.linspace(0, 1, len(t)) X = max(abs(integrate.cumtrapz(integrate.cumtrapz(t, l, initial=0), l))) if not len(line) or X > Xmax: orientation = int(np.sign((z[0] - self['Z0']) * (r[1] - r[0]) - (r[0] - self['R0']) * (z[1] - z[0]))) if orientation != 0: line = path.vertices[:: signTheta * orientation, :] else: line = path.vertices Xmax = X lines[levels[k]] = line del self.PSI del self.R del self.Z return lines
[docs] @dynaLoad def findSurfaces(self, levels=None, map=None): ''' Find flux surfaces at levels :param levels: defines at which levels the flux surfaces will be traced * None: use levels defined in gFile * Integer: number of levels * list: list of levels to find surfaces at :param map: psi mapping on which levels are defined (e.g. rho as function of psi) ''' signTheta = self._cocos['sigma_RpZ'] * self._cocos['sigma_rhotp'] # +! is clockwise t0 = datetime.datetime.now() if not hasattr(self, 'sep'): self._findSeparatrix() if np.iterable(levels): levels = list(levels) levels.sort() elif is_int(levels) and not isinstance(levels, bool): levels = list(np.linspace(0, 1, int(levels))) else: if 'levels' not in self: levels = list(np.linspace(0, 1, len(self.Rin))) else: levels = self['levels'] if map is not None: self.map = map if self.map is not None: levels = scipy.interpolate.PchipInterpolator(self.map, np.linspace(0, 1, self.map.size), extrapolate=True)(levels).tolist() levels[0] = 0.0 levels[-1] = 1.0 if not self.quiet: printi('Tracing flux surfaces ...') levels_psi = np.array(levels) * (self.flx - self.PSIaxis) * self.maxPSI + self.PSIaxis lines = self._findSurfaces(levels) self['levels'] = np.zeros((len(levels))) self['flux'] = fluxSurfaceTraces() self.nc = 0 for k, item1 in reverse_enumerate(lines.keys()): self['flux'][k] = SortedDict() self['flux'][k]['psi'] = levels_psi[k] self['levels'][k] = levels[k] line = lines[item1] if k == 0: # axis imaxr = np.argmax(self['flux'][k + 1]['R']) z_at_max_r, max_r = parabolaMaxCycle(self['flux'][k + 1]['Z'], self['flux'][k + 1]['R'], imaxr) iminr = np.argmin(self['flux'][k + 1]['R']) z_at_min_r, min_r = parabolaMaxCycle(self['flux'][k + 1]['Z'], self['flux'][k + 1]['R'], iminr) imaxz = np.argmax(self['flux'][k + 1]['Z']) r_at_max_z, max_z = parabolaMaxCycle(self['flux'][k + 1]['R'], self['flux'][k + 1]['Z'], imaxz) iminz = np.argmin(self['flux'][k + 1]['Z']) r_at_min_z, min_z = parabolaMaxCycle(self['flux'][k + 1]['R'], self['flux'][k + 1]['Z'], iminz) a = 0.5 * (max_r - min_r) kap = 0.5 * ((max_z - min_z) / a) simplePath = Path(np.vstack((self['flux'][k + 1]['R'], self['flux'][k + 1]['Z'])).T) if simplePath.contains_point((self['R0_interp'], self['Z0_interp'])): self['R0'] = self['R0_interp'] self['Z0'] = self['Z0_interp'] r = a * 1e-3 t = np.linspace(0, 2 * np.pi, len(self['flux'][k + 1]['R'])) self['flux'][k]['R'] = r * np.cos(t) + self['R0'] self['flux'][k]['Z'] = -signTheta * kap * r * np.sin(t) + self['Z0'] else: # all others if len(line): self['flux'][k]['R'] = line[:, 0] self['flux'][k]['Z'] = line[:, 1] elif hasattr(self, 'sep') and k == len(levels) - 1: # If you are here, it is because the EFIT separatrix turned out to be not so precise printi('Forcing find of new separatrix!') self._findSeparatrix() self['flux'][k]['R'] = self.sep[:, 0] self['flux'][k]['Z'] = self.sep[:, 1] else: printw( 'Bad flux surface! #' + str(k) + " This is likely to be a bad equilibrium, which does not satisfy Grad-Shafranov..." ) # pyplot.plot(path.vertices[:,0],path.vertices[:,1],'b') # pyplot.plot(self.sep[:,0],self.sep[:,1],'r') self['flux'][k]['R'] = self['flux'][k + 1]['R'].copy() self['flux'][k]['Z'] = self['flux'][k + 1]['Z'].copy() self.nc += 1 self['flux'].sort() # if lcfs does not close it's likely because we trusted external value of flux surface flux (e.g. from gEQDSK) # so we need to force re-finding of flux surfaces if (self['flux'][self.nc - 1]['R'][0] != self['flux'][self.nc - 1]['R'][-1]) | ( self['flux'][self.nc - 1]['Z'][0] != self['flux'][self.nc - 1]['Z'][-1] ): self.changeResolution(self.resolution) if not self.quiet: printi(' > Took {:}'.format(datetime.datetime.now() - t0)) # These quantities can take a lot of space, depending on the resolution # They are deleted, and if necessary re-generated on demand self.surfAvg()
def _changeResolution(self, resolution): # PSI is the table on which flux surfaces are generated. # By increasing its resolution, the contour path becomes more and more smooth. # This is much better than doing a spline interpolation through a rough path. self.resolution = resolution if self.resolution == 0: self.R = self.Rin self.Z = self.Zin self.PSI = self.PSIin elif is_int(self.resolution): if self.resolution > 0: if not self.quiet: printi(f'Increasing tables resolution by factor of {2 ** (self.resolution)} ...') nr = len(self.Rin) nz = len(self.Zin) for k in range(self.resolution): nr = nr + nr - 1 nz = nz + nz - 1 self.R = np.linspace(min(self.Rin), max(self.Rin), nr) self.Z = np.linspace(min(self.Zin), max(self.Zin), nz) self.PSI = RectBivariateSplineNaN(self.Zin, self.Rin, self.PSIin)(self.Z, self.R) elif self.resolution < 0: if not self.quiet: printi(f'Decreasing tables resolution by factor of {2 ** abs(self.resolution)} ...') resolution = 2 ** abs(self.resolution) self.R = self.Rin[::resolution] self.Z = self.Zin[::resolution] self.PSI = self.PSIin[::resolution, ::resolution] elif is_float(self.resolution): if not self.quiet: printi(f'Interpolating tables to {self.resolution} [m] resolution ...') self.R = np.linspace(min(self.Rin), max(self.Rin), int(np.ceil((max(self.Rin) - min(self.Rin)) / self.resolution))) self.Z = np.linspace(min(self.Zin), max(self.Zin), int(np.ceil((max(self.Zin) - min(self.Zin)) / self.resolution))) self.PSI = RectBivariateSplineNaN(self.Zin, self.Rin, self.PSIin)(self.Z, self.R) self.dd = np.sqrt((self.R[1] - self.R[0]) ** 2 + (self.Z[1] - self.Z[0]) ** 2) if not self.quiet: printi(f'Grid diagonal resolution: {self.dd} [m]')
[docs] @dynaLoad def changeResolution(self, resolution): ''' :param resolution: resolution to use when tracing flux surfaces * integer: multiplier of the original table * float: grid resolution in meters ''' self._changeResolution(resolution) self._crop() self._findAxis() self._findSeparatrix() self.findSurfaces()
def _findSeparatrix(self, accuracy=3): # separatrix is found by looking for the largest closed path enclosing the magnetic axis signTheta = self._cocos['sigma_RpZ'] * self._cocos['sigma_rhotp'] # +! is clockwise if not hasattr(self, 'PSI'): self._changeResolution(self.resolution) if not self.quiet: printi('Find separatrix ...') # use of self.PSIaxis is more robust than relying on # min an max, which can fail when coils are working hard # and poloidal flux from plasma is weak if self.sign_Ip * self._cocos['sigma_Bp'] > 0: # PSI increases with minor radius flxm = self.PSIaxis # np.nanmin(self.PSI) flxM = np.nanmax(self.PSI) else: flxm = self.PSIaxis # np.nanmax(self.PSI) flxM = np.nanmin(self.PSI) # pyplot.plot(self['R0'],self['Z0'],'or') #<< DEBUG axis kdbgmax = 50 flx_found = None forbidden = [] sep = None open_sep = None for kdbg in range(kdbgmax): flx = (flxM + flxm) / 2.0 line = [] paths = contourPaths(self.R, self.Z, self.PSI, [flx])[0] for path in paths: # if there is not Nan and the path closes if ( not np.isnan(path.vertices[:]).any() and np.allclose(path.vertices[0, 0], path.vertices[-1, 0]) and np.allclose(path.vertices[0, 1], path.vertices[-1, 1]) ): path.vertices[0, 0] = path.vertices[-1, 0] = (path.vertices[0, 0] + path.vertices[-1, 0]) * 0.5 path.vertices[0, 1] = path.vertices[-1, 1] = (path.vertices[0, 1] + path.vertices[-1, 1]) * 0.5 simplePath = Path(path.vertices) if ( np.max(simplePath.vertices[:, 0]) > self['R0'] and np.min(simplePath.vertices[:, 0]) < self['R0'] and np.max(simplePath.vertices[:, 1]) > self['Z0'] and min(simplePath.vertices[:, 1]) < self['Z0'] and simplePath.contains_point((self['R0'], self['Z0'])) and not any([simplePath.contains_point((Rf, Zf)) for Rf, Zf in forbidden]) ): dR = path.vertices[1, 0] - path.vertices[0, 0] dZ = path.vertices[1, 1] - path.vertices[0, 1] orientation = int(np.sign((path.vertices[0, 1] - self['Z0']) * dR - (path.vertices[0, 0] - self['R0']) * dZ)) line = path.vertices[:: signTheta * orientation, :] else: Rf = np.mean(path.vertices[:, 0]) Zf = np.mean(path.vertices[:, 1]) # do not add redundant forbidden points if any([simplePath.contains_point((Rf, Zf)) for Rf, Zf in forbidden]): pass # do not add forbidden that encompass the current separatrix elif sep is not None and Path(sep).contains_point((Rf, Zf)): pass else: # pyplot.plot(Rf,Zf,'xm') #<< DEBUG plot, showing additional forbiddent points forbidden.append([Rf, Zf]) if len(line): # pyplot.plot(line[:,0],line[:,1],'r') #<< DEBUG plot, showing convergence try: # stop condition np.testing.assert_array_almost_equal(sep / self['R0'], line / self['R0'], accuracy) break except Exception: pass finally: sep = line flx_found = flx flxm = flx else: open_sep = paths flxM = flx # for path in paths: # pyplot.plot(path.vertices[:,0],path.vertices[:,1],'b') #<< DEBUG plot, showing convergence # do not store new separatrix if it hits edges of computation domain if ( (np.abs(np.min(sep[:, 0]) - np.min(self.R)) < 1e-3) or (np.abs(np.max(sep[:, 0]) - np.max(self.R)) < 1e-3) or (np.abs(np.min(sep[:, 1]) - np.min(self.Z)) < 1e-3) or (np.abs(np.max(sep[:, 1]) - np.max(self.Z)) < 1e-3) ): self.forceFindSeparatrix = False else: self.sep = sep self.open_sep = open_sep # pyplot.plot(sep[:,0],sep[:,1],'k',lw=2) #<< DEBUG plot, showing separatrix # printd(flxm,flxM,flx,flxm-flxM,kdbg) #<< DEBUG print, showing convergence if self.flx is None: self.flx = flx_found elif self.PSIaxis is not None: self.PSI = (self.PSI - self.PSIaxis) / abs(flx_found - self.PSIaxis) * abs(self.flx - self.PSIaxis) + self.PSIaxis if self.open_sep: outer_midplane_distance = [] for k, path in enumerate(self.open_sep): ix = np.where(path.vertices[:, 0] > self['R0'])[0] if not len(ix): outer_midplane_distance.append(np.inf) continue outer_midplane_distance.append(min(abs(path.vertices[ix, 1] - self['Z0']))) ix = np.argmin(outer_midplane_distance) # pyplot.plot(self.open_sep[ix].vertices[:,0],self.open_sep[ix].vertices[:,1],'m') #<< DEBUG plot, showing open field separatrix self.open_sep = self.open_sep[ix].vertices if kdbg == kdbgmax - 1: printw('Finding of last closed flux surface aborted after %d iterations!!!' % kdbgmax) def _calcBrBz(self): RR, ZZ = np.meshgrid(self.Rin, self.Zin) [dPSIdZ, dPSIdR] = np.gradient(self.PSIin, self.Zin[1] - self.Zin[0], self.Rin[1] - self.Rin[0]) Br = self._cocos['sigma_RpZ'] * self._cocos['sigma_Bp'] * dPSIdZ / (RR * ((2 * np.pi) ** self._cocos['exp_Bp'])) Bz = -self._cocos['sigma_RpZ'] * self._cocos['sigma_Bp'] * dPSIdR / (RR * ((2 * np.pi) ** self._cocos['exp_Bp'])) return Br, Bz def _BrBzAndF(self): t0 = datetime.datetime.now() if not self.quiet: printi('Find Br, Bz, F on flux surfaces ...') RR, ZZ = np.meshgrid(self.Rin, self.Zin) # F=Bt*R is a flux surface quantity if not hasattr(self, 'F'): # if F is not present, find it through the Btin table F = self._surfMean(self.Btin * RR) else: # if F is present F = interpolate.InterpolatedUnivariateSpline(np.linspace(0, 1, self.F.size), self.F)(self['levels']) for k in range(self.nc): self['flux'][k]['F'] = F[k] if self['RCENTR'] is None: printw('Using magnetic axis as RCENTR of vacuum field ( BCENTR = Fpol[-1] / RCENTR)') self['RCENTR'] = self['R0'] self['BCENTR'] = self['flux'][self.nc - 1]['F'] / self['RCENTR'] # if P is present if hasattr(self, 'P'): P = interpolate.InterpolatedUnivariateSpline(np.linspace(0, 1, self.P.size), self.P)(self['levels']) for k in range(self.nc): self['flux'][k]['P'] = P[k] # if PPRIME is present if hasattr(self, 'PPRIME'): PPRIME = interpolate.InterpolatedUnivariateSpline(np.linspace(0, 1, self.PPRIME.size), self.PPRIME)(self['levels']) for k in range(self.nc): self['flux'][k]['PPRIME'] = PPRIME[k] # if FFPRIM is present if hasattr(self, 'FFPRIM'): FFPRIM = interpolate.InterpolatedUnivariateSpline(np.linspace(0, 1, self.FFPRIM.size), self.FFPRIM)(self['levels']) for k in range(self.nc): self['flux'][k]['FFPRIM'] = FFPRIM[k] # calculate Br and Bz magnetic fields Br, Bz = self._calcBrBz() [dBrdZ, dBrdR] = np.gradient(Br, self.Zin[2] - self.Zin[1], self.Rin[2] - self.Rin[1]) [dBzdZ, dBzdR] = np.gradient(Bz, self.Zin[2] - self.Zin[1], self.Rin[2] - self.Rin[1]) [dBtdZ, dBtdR] = np.gradient(self.Btin, self.Zin[2] - self.Zin[1], self.Rin[2] - self.Rin[1]) [dRBtdZ, dRBtdR] = np.gradient(RR * self.Btin, self.Zin[2] - self.Zin[1], self.Rin[2] - self.Rin[1]) Jt = self._cocos['sigma_RpZ'] * (dBrdZ - dBzdR) / (4 * np.pi * 1e-7) # calculate flux expansion Brfun = RectBivariateSplineNaN(self.Zin, self.Rin, Br) Bzfun = RectBivariateSplineNaN(self.Zin, self.Rin, Bz) Jtfun = RectBivariateSplineNaN(self.Zin, self.Rin, Jt) self.fluxexpansion = [] self.dl = [] self.fluxexpansion_dl = [] self.int_fluxexpansion_dl = [] for k in range(self.nc): self.dl.append( np.sqrt(np.ediff1d(self['flux'][k]['R'], to_begin=0.0) ** 2 + np.ediff1d(self['flux'][k]['Z'], to_begin=0.0) ** 2) ) self['flux'][k]['Br'] = Brfun.ev(self['flux'][k]['Z'], self['flux'][k]['R']) self['flux'][k]['Bz'] = Bzfun.ev(self['flux'][k]['Z'], self['flux'][k]['R']) modBp = np.sqrt(self['flux'][k]['Br'] ** 2 + self['flux'][k]['Bz'] ** 2) self.fluxexpansion.append(1 / modBp) self.fluxexpansion_dl.append(self.fluxexpansion[k] * self.dl[k]) self.int_fluxexpansion_dl.append(np.sum(self.fluxexpansion_dl[k])) self['flux'][k]['Jt'] = Jtfun.ev(self['flux'][k]['Z'], self['flux'][k]['R']) if not self.quiet: printi(' > Took {:}'.format(datetime.datetime.now() - t0)) def _crop(self): ''' Eliminate points on the PSI map that are outside of the limiter surface. ''' if self.rlim is not None and self.zlim is not None and len(self.rlim) > 3 and len(self.zlim) > 3: if not self.quiet: printi('Cropping tables ...') if self.rlim is not None and self.zlim is not None: if np.any(np.isnan(self.rlim)) or np.any(np.isnan(self.zlim)): printw('fluxsurfaces: rlim/zlim arrays contain NaNs') return bbox = [min(self.rlim), max(self.rlim), min(self.zlim), max(self.zlim)] limits = [ max([np.argmin(abs(self.R - bbox[0])) - 1, 0]), min([np.argmin(abs(self.R - bbox[1])) + 1, len(self.R) - 1]), max([np.argmin(abs(self.Z - bbox[2])) - 1, 0]), min([np.argmin(abs(self.Z - bbox[3])) + 1, len(self.Z) - 1]), ] self.PSI = self.PSI[limits[2] : limits[3], limits[0] : limits[1]] self.R = self.R[limits[0] : limits[1]] self.Z = self.Z[limits[2] : limits[3]]
[docs] @dynaLoad def resample(self, npts=None, technique='uniform', phase='Xpoint'): ''' resample number of points on flux surfaces :param npts: number of points :param technique: 'uniform','separatrix','pest' :param phase: float for poloidal angle or 'Xpoint' ''' if npts is None or np.iterable(npts): npts = self.sep.size if technique == 'separatrix': self._resample() elif technique == 'uniform': self._resample(npts, phase) elif technique == 'pest': th = self._straightLineTheta(npts) self._resample(th, phase) self._BrBzAndF() self.surfAvg()
def _resample(self, npts=None, phase='Xpoint'): """ Resampling will lead inaccuracies of the order of the resolution on which the flux surface tracing was originally done """ signTheta = self._cocos['sigma_RpZ'] * self._cocos['sigma_rhotp'] # +! is clockwise # pyplot.subplot(1, 1, 1, aspect='equal') if not self.quiet: printi('Resampling flux surfaces ...') if npts is None: # maintain angles, direction and angle of separatrix theta0 = -signTheta * np.arctan2(self.sep[:, 1] - self['Z0'], self.sep[:, 0] - self['R0']) thetaXpoint = theta0[0] per_ = 1 else: if phase == 'Xpoint': # X-point as the location of minimum Bp along the separatrix # indexXpoint = np.argmin( # RectBivariateSplineNaN(self.Zin, self.Rin, self.Bpin).ev(self.sep[:, 1], self.sep[:, 0]) # ) # thetaXpoint = np.arctan2(self.sep[indexXpoint, 1] - self['Z0'], self.sep[indexXpoint, 0] - self['R0']) # X-point as the location of minimum angle between two adjacent segments of the separatrix a = np.vstack((np.gradient(self.sep[:-1, 0]), np.gradient(self.sep[:-1, 1]))).T b = np.vstack( ( np.gradient(np.hstack((self.sep[1:-1, 0], self.sep[0, 0]))), np.gradient(np.hstack((self.sep[1:-1, 1], self.sep[0, 1]))), ) ).T gr = (a[:, 0] * b[:, 0] + a[:, 1] * b[:, 1]) / np.sqrt(np.sum(a**2, 1)) / np.sqrt(np.sum(b**2, 1)) t = -signTheta * np.arctan2(self.sep[:, 1] - self['Z0'], self.sep[:, 0] - self['R0']) thetaXpoint = t[np.argmin(gr)] per_ = 0 else: thetaXpoint = phase per_ = 1 if not np.iterable(npts): theta0 = np.linspace(0, 2 * np.pi, npts) + thetaXpoint for k in range(self.nc): if self['levels'][k] == 1: per = per_ else: per = 1 t = np.unwrap(-signTheta * np.arctan2(self['flux'][k]['Z'] - self['Z0'], self['flux'][k]['R'] - self['R0'])) if np.iterable(npts): if np.iterable(npts[0]): theta0 = npts[k] else: theta0 = npts # force 'X axis' to be monotonically increasing if t[0] > t[1]: t = -t theta = -theta0 else: theta = theta0 index = np.argsort((theta[:-1] + thetaXpoint) % (2 * np.pi) - thetaXpoint) index = np.hstack((index, index[0])) theta = np.unwrap(theta[index]) index = np.argsort((t[:-1] + thetaXpoint) % (2 * np.pi) - thetaXpoint) index = np.hstack((index, index[0])) t = np.unwrap(t[index]) for item in ['R', 'Z', 'Br', 'Bz']: if item in self['flux'][k]: self['flux'][k][item] = self['flux'][k][item][index] # These quantities are periodic (per=1); # however per=0 can be used to allow discontinuity of derivatives at X-point tckp = interpolate.splrep(t, self['flux'][k][item], k=3, per=1) # per=per) self['flux'][k][item] = interpolate.splev((theta - t[0]) % max(t - t[0]) + t[0], tckp, ext=0) self['flux'][k][item][-1] = self['flux'][k][item][0] def _straightLineTheta(self, npts=None): signTheta = self._cocos['sigma_RpZ'] * self._cocos['sigma_rhotp'] if not self.quiet: printi('Evaluating straight line theta ...') if 'avg' not in self: self.surfAvg() theta = [] for k in range(self.nc): if npts is None: npts_ = self['flux'][k]['R'].size else: npts_ = npts # t_ is the uniformly sampled straight-line theta t_ = np.linspace(0, 2 * np.pi, npts_) if self['levels'][0] == 0 and k == 0: theta.append(t_) else: # thetaStraight is the calculated straigthline theta signBp = signTheta * np.sign( (self['flux'][k]['Z'] - self['Z0']) * self['flux'][k]['Br'] - (self['flux'][k]['R'] - self['R0']) * self['flux'][k]['Bz'] ) Bp = signBp * np.sqrt(self['flux'][k]['Br'] ** 2 + self['flux'][k]['Bz'] ** 2) Bt = self['flux'][k]['F'] / self['flux'][k]['R'] thetaStraight = np.unwrap(np.cumsum(self.dl[k] * Bt / (abs(Bp) * self['avg']['q'][k] * self['flux'][k]['R']))) # t is the real theta angle t = np.unwrap(-signTheta * np.arctan2(self['flux'][k]['Z'] - self['Z0'], self['flux'][k]['R'] - self['R0'])) # enforce 'X axis' (thetaStraight) to be monotonically increasing if thetaStraight[0] > thetaStraight[1]: thetaStraight = -thetaStraight if t[0] > t[1]: t = -t # to use periodic spline I need to make my 'y' periodic, this is done by defining tDelta, that is the difference # between the straigthline and the real theta tDelta = (t - t[0]) - (thetaStraight - thetaStraight[0]) # the interpolation should be strictly monotonic. Enforcing continuity to the fifth derivative (k=5) is very likely to ensure that. tckp = interpolate.splrep(thetaStraight, tDelta, k=5, per=True) tDeltaInt = interpolate.splev( (t_ - thetaStraight[0]) % max(thetaStraight - thetaStraight[0]) + thetaStraight[0], tckp, ext=2 ) # now t0 represents the real thetas at which I get uniform straightline theta sampling # t0 is equal to the uniformly sampled straigthline theta plus the interpolated tDelta angle and some phase constants t0 = tDeltaInt + t_ + t[0] - thetaStraight[0] if t[0] < t[1]: t0 = -t0 t = -t theta.append(t0) # if k==self['levels'].size-1: # pyplot.figure() # pyplot.plot( # thetaStraight,tDelta,'o', # (t_-thetaStraight[0])%max(thetaStraight-thetaStraight[0])+thetaStraight[0],tDeltaInt,'.-r', # ) # pyplot.figure() # pyplot.plot( # thetaStraight,t,'o', # t_,t0,'.-r', # ) if self['levels'][0] == 0: if theta[1][0] < theta[1][-1]: theta[0] = np.linspace(min(theta[1]), min(theta[1]) + 2 * np.pi, np_) else: theta[0] = np.linspace(min(theta[1]) + 2 * np.pi, min(theta[1]), np_) return theta
[docs] def surfAvg(self, function=None): """ Flux surface averaged quantity for each flux surface :param function: function which returns the value of the quantity to be flux surface averaged at coordinates r,z :return: array of the quantity fluxs surface averaged for each flux surface :Example: >> def test_avg_function(r, z): >> return RectBivariateSplineNaN(Z, R, PSI, k=1).ev(z,r) """ t0 = datetime.datetime.now() if not self.calculateAvgGeo: return self._BrBzAndF() # define handy function for flux-surface averaging def flxAvg(k, input): return np.sum(self.fluxexpansion_dl[k] * input) / self.int_fluxexpansion_dl[k] # if user wants flux-surface averaging of a specific function, then calculate and return it if function is not None: if 'avg' not in self: self.surfAvg() if not self.quiet: printi('Flux surface averaging of user defined quantity ...') avg = np.zeros((self.nc)) for k in range(self.nc): avg[k] = flxAvg(k, function(self['flux'][k]['R'], self['flux'][k]['Z'])) return avg self['avg'] = SortedDict() self['geo'] = SortedDict() self['midplane'] = SortedDict() self['geo']['psi'] = self['levels'] * (self.flx - self.PSIaxis) + self.PSIaxis self['geo']['psin'] = self['levels'] # calculate flux surface average of typical quantities if not self.quiet: printi('Flux surface averaging ...') for item in [ 'R', 'a', 'R**2', '1/R', '1/R**2', 'Bp', 'Bp**2', 'Bp*R', 'Bp**2*R**2', 'Btot', 'Btot**2', 'Bt', 'Bt**2', 'ip', 'vp', 'q', 'hf', 'Jt', 'Jt/R', 'fc', 'grad_term', 'P', 'F', 'PPRIME', 'FFPRIM', ]: self['avg'][item] = np.zeros((self.nc)) for k in range(self.nc): Bp2 = self['flux'][k]['Br'] ** 2 + self['flux'][k]['Bz'] ** 2 signBp = ( self._cocos['sigma_rhotp'] * self._cocos['sigma_RpZ'] * np.sign( (self['flux'][k]['Z'] - self['Z0']) * self['flux'][k]['Br'] - (self['flux'][k]['R'] - self['R0']) * self['flux'][k]['Bz'] ) ) Bp = signBp * np.sqrt(Bp2) Bt = self['flux'][k]['F'] / self['flux'][k]['R'] B2 = Bp2 + Bt**2 B = np.sqrt(B2) bratio = B / np.max(B) self['flux'][k]['Bmax'] = np.max(B) # self['avg']['psi'][k] = flxAvg(k, function(self['flux'][k]['R'],self['flux'][k]['Z']) ) self['avg']['R'][k] = flxAvg(k, self['flux'][k]['R']) self['avg']['a'][k] = flxAvg(k, np.sqrt((self['flux'][k]['R'] - self['R0']) ** 2 + (self['flux'][k]['Z'] - self['Z0']) ** 2)) self['avg']['R**2'][k] = flxAvg(k, self['flux'][k]['R'] ** 2) self['avg']['1/R'][k] = flxAvg(k, 1.0 / self['flux'][k]['R']) self['avg']['1/R**2'][k] = flxAvg(k, 1.0 / self['flux'][k]['R'] ** 2) self['avg']['Bp'][k] = flxAvg(k, Bp) self['avg']['Bp**2'][k] = flxAvg(k, Bp2) self['avg']['Bp*R'][k] = flxAvg(k, Bp * self['flux'][k]['R']) self['avg']['Bp**2*R**2'][k] = flxAvg(k, Bp2 * self['flux'][k]['R'] ** 2) self['avg']['Btot'][k] = flxAvg(k, B) self['avg']['Btot**2'][k] = flxAvg(k, B2) self['avg']['Bt'][k] = flxAvg(k, Bt) self['avg']['Bt**2'][k] = flxAvg(k, Bt**2) self['avg']['vp'][k] = ( self._cocos['sigma_rhotp'] * self._cocos['sigma_Bp'] * np.sign(self['avg']['Bp'][k]) * self.int_fluxexpansion_dl[k] * (2.0 * np.pi) ** (1.0 - self._cocos['exp_Bp']) ) self['avg']['q'][k] = ( self._cocos['sigma_rhotp'] * self._cocos['sigma_Bp'] * self['avg']['vp'][k] * self['flux'][k]['F'] * self['avg']['1/R**2'][k] / ((2 * np.pi) ** (2.0 - self._cocos['exp_Bp'])) ) self['avg']['hf'][k] = flxAvg(k, (1.0 - np.sqrt(1.0 - bratio) * (1.0 + bratio / 2.0)) / bratio**2) # these quantites are calculated from Bx,By and hence are not that precise # if information is available about P, PPRIME, and F, FFPRIM then they will be substittuted self['avg']['ip'][k] = self._cocos['sigma_rhotp'] * np.sum(self.dl[k] * Bp) / (4e-7 * np.pi) self['avg']['Jt'][k] = flxAvg(k, self['flux'][k]['Jt']) self['avg']['Jt/R'][k] = flxAvg(k, self['flux'][k]['Jt'] / self['flux'][k]['R']) self['avg']['F'][k] = self['flux'][k]['F'] if hasattr(self, 'P'): self['avg']['P'][k] = self['flux'][k]['P'] elif 'P' in self['avg']: del self['avg']['P'] if hasattr(self, 'PPRIME'): self['avg']['PPRIME'][k] = self['flux'][k]['PPRIME'] elif 'PPRIME' in self['avg']: del self['avg']['PPRIME'] if hasattr(self, 'FFPRIM'): self['avg']['FFPRIM'][k] = self['flux'][k]['FFPRIM'] elif 'FFPRIM' in self['avg']: del self['avg']['FFPRIM'] ## The circulating particle fraction calculation has been converted from IDL to python ## following the fraction_circ.pro which is widely used at DIII-D ## Formula 4.54 of S.P. Hirshman and D.J. Sigmar 1981 Nucl. Fusion 21 1079 # x=np.array([0.0387724175, 0.1160840706, 0.1926975807, 0.268152185, 0.3419940908, 0.4137792043, 0.4830758016, 0.549467125, 0.6125538896, 0.6719566846, 0.7273182551, 0.7783056514, 0.8246122308, 0.8659595032, 0.9020988069, 0.9328128082, 0.9579168192, 0.9772599499, 0.9907262386, 0.9982377097]) # w=np.array([0.0775059479, 0.0770398181, 0.0761103619, 0.074723169, 0.0728865823, 0.0706116473, 0.0679120458, 0.0648040134, 0.0613062424, 0.057439769, 0.0532278469, 0.0486958076, 0.0438709081, 0.0387821679, 0.0334601952, 0.0279370069, 0.0222458491, 0.0164210583, 0.0104982845, 0.004521277]) # lmbd = 1-x**2 # weight = 2.*w*np.sqrt(1. - lmbd) # denom = np.zeros((len(lmbd))) # for n in range(len(lmbd)): # denom[n] = flxAvg(k, np.sqrt(1.-lmbd[n]*bratio) ) # integral=np.sum(weight*lmbd/denom) # self['avg']['fc'][k] =0.75*self['avg']['Btot**2'][k]/np.max(B)**2*integral # # The above calculation is exactly equivalent to the Lin-Lu form of trapped particle fraction # article: Y.R. Lin-Liu and R.L. Miller, Phys. of Plamsas 2 (1995) 1666 h = self['avg']['Btot'][k] / self['flux'][k]['Bmax'] h2 = self['avg']['Btot**2'][k] / self['flux'][k]['Bmax'] ** 2 # Equation 4 ftu = 1.0 - h2 / (h**2) * (1.0 - np.sqrt(1.0 - h) * (1.0 + 0.5 * h)) # Equation 7 ftl = 1.0 - h2 * self['avg']['hf'][k] # Equation 18,19 self['avg']['fc'][k] = 1 - (0.75 * ftu + 0.25 * ftl) grad_parallel = np.diff(B) / self.fluxexpansion_dl[k][1:] / B[1:] self['avg']['grad_term'][k] = np.sum(self.fluxexpansion_dl[k][1:] * grad_parallel**2) / self.int_fluxexpansion_dl[k] # q on axis by extrapolation if self['levels'][0] == 0: x = self['levels'][1:] y = self['avg']['q'][1:] self['avg']['q'][0] = y[1] - ((y[1] - y[0]) / (x[1] - x[0])) * x[1] for k in range(self.nc): self['flux'][k]['q'] = self['avg']['q'][k] if 'P' in self['avg'] and 'PPRIME' not in self['avg']: self['avg']['PPRIME'] = deriv(self['geo']['psi'], self['avg']['P']) if 'F' in self['avg'] and 'FFPRIM' not in self['avg']: self['avg']['FFPRIM'] = self['avg']['F'] * deriv(self['geo']['psi'], self['avg']['F']) if 'PPRIME' in self['avg'] and 'FFPRIM' in self['avg']: self['avg']['Jt/R'] = ( -self._cocos['sigma_Bp'] * (self['avg']['PPRIME'] + self['avg']['FFPRIM'] * self['avg']['1/R**2'] / (4 * np.pi * 1e-7)) * (2.0 * np.pi) ** self._cocos['exp_Bp'] ) # calculate currents based on Grad-Shafranov if pressure information is available # TEMPORARILY DISABLED: issue at first knot when looking at Jeff which is near zero on axis if False and 'PPRIME' in self['avg'] and 'F' in self['avg'] and 'FFPRIM' in self['avg']: self['avg']['dip/dpsi'] = ( -self._cocos['sigma_Bp'] * self['avg']['vp'] * (self['avg']['PPRIME'] + self['avg']['FFPRIM'] * self['avg']['1/R**2'] / (4e-7 * np.pi)) / ((2 * np.pi) ** (1.0 - self._cocos['exp_Bp'])) ) self['avg']['ip'] = integrate.cumtrapz(self['avg']['dip/dpsi'], self['geo']['psi'], initial=0) else: self['avg']['dip/dpsi'] = deriv(self['geo']['psi'], self['avg']['ip']) self['avg']['Jeff'] = ( self._cocos['sigma_Bp'] * self._cocos['sigma_rhotp'] * self['avg']['dip/dpsi'] * self['BCENTR'] / (self['avg']['q'] * (2 * np.pi) ** (1.0 - self._cocos['exp_Bp'])) ) self['CURRENT'] = self['avg']['ip'][-1] # calculate geometric quantities if not self.quiet: printi(' > Took {:}'.format(datetime.datetime.now() - t0)) if not self.quiet: printi('Geometric quantities ...') t0 = datetime.datetime.now() for k in range(self.nc): geo = fluxGeo(self['flux'][k]['R'], self['flux'][k]['Z'], lcfs=(k == (self.nc - 1))) for item in sorted(geo): if item not in self['geo']: self['geo'][item] = np.zeros((self.nc)) self['geo'][item][k] = geo[item] self['geo']['vol'] = np.abs(self.volume_integral(1)) self['geo']['cxArea'] = np.abs(self.surface_integral(1)) self['geo']['phi'] = ( self._cocos['sigma_Bp'] * self._cocos['sigma_rhotp'] * integrate.cumtrapz(self['avg']['q'], self['geo']['psi'], initial=0) * (2.0 * np.pi) ** (1.0 - self._cocos['exp_Bp']) ) # self['geo']['bunit']=(abs(self['avg']['q'])/self['geo']['a'])*( deriv(self['geo']['a'],self['geo']['psi']) ) self['geo']['bunit'] = deriv(self['geo']['a'], self['geo']['phi']) / (2.0 * np.pi * self['geo']['a']) # fix geometric quantities on axis if self['levels'][0] == 0: self['geo']['delu'][0] = 0.0 self['geo']['dell'][0] = 0.0 self['geo']['delta'][0] = 0.0 self['geo']['zeta'][0] = 0.0 self['geo']['zetaou'][0] = 0.0 self['geo']['zetaiu'][0] = 0.0 self['geo']['zetail'][0] = 0.0 self['geo']['zetaol'][0] = 0.0 # linear extrapolation x = self['levels'][1:] for item in ['kapu', 'kapl', 'bunit']: y = self['geo'][item][1:] self['geo'][item][0] = y[1] - ((y[1] - y[0]) / (x[1] - x[0])) * x[1] self['geo']['kap'][0] = 0.5 * self['geo']['kapu'][0] + 0.5 * self['geo']['kapl'][0] # calculate rho only if levels start from 0 self['geo']['rho'] = np.sqrt(np.abs(self['geo']['phi'] / (np.pi * self['BCENTR']))) else: # the values of phi, rho have meaning only if I can integrate from the first flux surface on... if 'phi' in self['geo']: del self['geo']['phi'] if 'rho' in self['geo']: del self['geo']['rho'] # calculate betas if 'P' in self['avg']: Btvac = self['BCENTR'] * self['RCENTR'] / self['geo']['R'][-1] self['avg']['beta_t'] = abs( self.volume_integral(self['avg']['P']) / (Btvac**2 / 2.0 / 4.0 / np.pi / 1e-7) / self['geo']['vol'][-1] ) i = self['CURRENT'] / 1e6 a = self['geo']['a'][-1] self['avg']['beta_n'] = self['avg']['beta_t'] / abs(i / a / Btvac) * 100 Bpave = self['CURRENT'] * (4 * np.pi * 1e-7) / self['geo']['per'][-1] self['avg']['beta_p'] = abs( self.volume_integral(self['avg']['P']) / (Bpave**2 / 2.0 / 4.0 / np.pi / 1e-7) / self['geo']['vol'][-1] ) # the values of rhon has a meaning only if I have the value at the lcfs if 'rho' in self['geo'] and self['levels'][self.nc - 1] == 1.0: self['geo']['rhon'] = self['geo']['rho'] / max(self['geo']['rho']) # fcap, f(psilim)/f(psi) self['avg']['fcap'] = np.zeros((self.nc)) for k in range(self.nc): self['avg']['fcap'][k] = self['flux'][self.nc - 1]['F'] / self['flux'][k]['F'] # hcap, fcap / <R0**2/R**2> self['avg']['hcap'] = self['avg']['fcap'] / (self['RCENTR'] ** 2 * self['avg']['1/R**2']) # RHORZ (linear extrapolation for rho>1) def ext_arr_linear(x, y): dydx = (y[-1] - y[-2]) / (x[-1] - x[-2]) extra_x = (x[-1] - x[-2]) * np.r_[1:1000] + x[-1] extra_y = (x[-1] - x[-2]) * np.r_[1:1000] * dydx + y[-1] x = np.hstack((x, extra_x)) y = np.hstack((y, extra_y)) return [x, y] [new_psi_mesh0, new_PHI] = ext_arr_linear(self['geo']['psi'], self['geo']['phi']) PHIRZ = interpolate.interp1d(new_psi_mesh0, new_PHI, kind='linear', bounds_error=False)(self.PSIin) RHORZ = np.sqrt(abs(PHIRZ / np.pi / self['BCENTR'])) # gcap <(grad rho)**2*(R0/R)**2> dRHOdZ, dRHOdR = np.gradient(RHORZ, self.Zin[2] - self.Zin[1], self.Rin[2] - self.Rin[1]) dPHI2 = dRHOdZ**2 + dRHOdR**2 dp2fun = RectBivariateSplineNaN(self.Zin, self.Rin, dPHI2) self['avg']['gcap'] = np.zeros((self.nc)) for k in range(self.nc): self['avg']['gcap'][k] = ( np.sum(self.fluxexpansion_dl[k] * dp2fun.ev(self['flux'][k]['Z'], self['flux'][k]['R']) / self['flux'][k]['R'] ** 2) / self.int_fluxexpansion_dl[k] ) self['avg']['gcap'] *= self['RCENTR'] ** 2 # * self['avg']['1/R**2'] # linear extrapolation x = self['levels'][1:] for item in ['gcap', 'hcap', 'fcap']: y = self['avg'][item][1:] self['avg'][item][0] = y[1] - ((y[1] - y[0]) / (x[1] - x[0])) * x[1] else: if 'rhon' in self['geo']: del self['geo']['rhon'] # midplane quantities self['midplane']['R'] = self['geo']['R'] + self['geo']['a'] self['midplane']['Z'] = self['midplane']['R'] * 0 + self['Z0'] Br, Bz = self._calcBrBz() self['midplane']['Br'] = RectBivariateSplineNaN(self.Zin, self.Rin, Br).ev(self['midplane']['Z'], self['midplane']['R']) self['midplane']['Bz'] = RectBivariateSplineNaN(self.Zin, self.Rin, Bz).ev(self['midplane']['Z'], self['midplane']['R']) signBp = -self._cocos['sigma_rhotp'] * self._cocos['sigma_RpZ'] * np.sign(self['midplane']['Bz']) self['midplane']['Bp'] = signBp * np.sqrt(self['midplane']['Br'] ** 2 + self['midplane']['Bz'] ** 2) self['midplane']['Bt'] = [] for k in range(self.nc): self['midplane']['Bt'].append(self['flux'][k]['F'] / self['midplane']['R'][k]) self['midplane']['Bt'] = np.array(self['midplane']['Bt']) # ============ # extra infos # ============ self['info'] = SortedDict() # Normlized plasma inductance # * calculated using {Inductive flux usage and its optimization in tokamak operation T.C.Luce et al.} EQ (A2,A3,A4) # * ITER IMAS li3 ip = self['CURRENT'] vol = self['geo']['vol'][-1] dpsi = np.abs(np.gradient(self['geo']['psi'])) r_axis = self['R0'] a = self['geo']['a'][-1] if self['RCENTR'] is None: printw('Using magnetic axis as RCENTR of vacuum field ( BCENTR = Fpol[-1] / RCENTR)') r_0 = self['R0'] else: r_0 = self['RCENTR'] kappa_x = self['geo']['kap'][-1] # should be used if kappa_a = vol / (2.0 * np.pi * r_0 * np.pi * a * a) correction_factor = (1 + kappa_x**2) / (2.0 * kappa_a) Bp2_vol = 0 for k in range(self.nc): # loop over the flux surfaces Bp = np.sqrt(self['flux'][k]['Br'] ** 2 + self['flux'][k]['Bz'] ** 2) dl = np.sqrt(np.ediff1d(self['flux'][k]['R'], to_begin=0) ** 2 + np.ediff1d(self['flux'][k]['Z'], to_begin=0) ** 2) Bpl = np.sum(Bp * dl * 2 * np.pi) # integral over flux surface Bp2_vol += Bpl * dpsi[k] # integral over dpsi (making it <Bp**2> * V ) circum = np.sum(dl) # to calculate the length of the last closed flux surface li_from_definition = Bp2_vol / vol / constants.mu_0 / constants.mu_0 / ip / ip * circum * circum # li_3_TLUCE is the same as li_3_IMAS (by numbers) # ali_1_EFIT is the same as li_from_definition self['info']['internal_inductance'] = { "li_from_definition": li_from_definition, "li_(1)_TLUCE": li_from_definition / circum / circum * 2 * vol / r_0 * correction_factor, "li_(2)_TLUCE": li_from_definition / circum / circum * 2 * vol / r_axis, "li_(3)_TLUCE": li_from_definition / circum / circum * 2 * vol / r_0, "li_(1)_EFIT": circum * circum * Bp2_vol / (vol * constants.mu_0 * constants.mu_0 * ip * ip), "li_(3)_IMAS": 2 * Bp2_vol / r_0 / ip / ip / constants.mu_0 / constants.mu_0, } # EFIT current normalization self['info']['J_efit_norm'] = ( (self['RCENTR'] * self['avg']['1/R']) * self['avg']['Jt'] / (self['CURRENT'] / self['geo']['cxArea'][-1]) ) # open separatrix if self.open_sep is not None: try: self['info']['open_separatrix'] = self.sol(levels=[1], open_flx={1: self.open_sep})[0][0] except Exception as _excp: printw('Error tracing open field-line separatrix: ' + repr(_excp)) self['info']['open_separatrix'] = _excp else: ros = self['info']['open_separatrix']['R'] istrk = np.array([0, -1] if ros[-1] > ros[0] else [-1, 0]) # Sort it so it goes inner, then outer strk pt self['info']['rvsin'], self['info']['rvsout'] = ros[istrk] self['info']['zvsin'], self['info']['zvsout'] = self['info']['open_separatrix']['Z'][istrk] # primary xpoint i = np.argmin(np.sqrt(self['flux'][self.nc - 1]['Br'] ** 2 + self['flux'][self.nc - 1]['Bz'] ** 2)) self['info']['xpoint'] = np.array([self['flux'][self.nc - 1]['R'][i], self['flux'][self.nc - 1]['Z'][i]]) # identify sol regions (works for single x-point >> do not do this for double-X-point or limited cases) if ( 'rvsin' in self['info'] and 'zvsin' in self['info'] and np.sign(self.open_sep[0, 1]) == np.sign(self.open_sep[-1, 1]) and self.open_sep[0, 1] != self.open_sep[-1, 1] and self.open_sep[0, 0] != self.open_sep[-1, 0] ): rx, zx = self['info']['xpoint'] # find minimum distance between legs of open separatrix used to estimate circle radius `a` k = int(len(self.open_sep) // 2) r0 = self.open_sep[:k, 0] z0 = self.open_sep[:k, 1] r1 = self.open_sep[k:, 0] z1 = self.open_sep[k:, 1] d0 = np.sqrt((r0 - rx) ** 2 + (z0 - zx) ** 2) i0 = np.argmin(d0) d1 = np.sqrt((r1 - rx) ** 2 + (z1 - zx) ** 2) i1 = np.argmin(d1) + k a = np.sqrt((self.open_sep[i0, 0] - self.open_sep[i1, 0]) ** 2 + (self.open_sep[i0, 1] - self.open_sep[i1, 1]) ** 2) a *= 3 # circle t = np.linspace(0, 2 * np.pi, 101)[:-1] r = a * np.cos(t) + rx z = a * np.sin(t) + zx # intersect open separatrix with small circle around xpoint circle = line_intersect(np.array([self.open_sep[:, 0], self.open_sep[:, 1]]).T, np.array([r, z]).T) if len(circle) == 4: # always sort points so that they are in [inner_strike, outer_strike, outer_midplane, inner_midplane] order circle0 = circle - np.array([rx, zx])[np.newaxis, :] # clockwise for upper Xpoint if zx > 0 and np.sign(circle0[0, 0] * circle0[1, 1] - circle0[1, 0] * circle0[0, 1]) > 0: circle = circle[::-1] # counter clockwise for lower Xpoint elif zx < 0 and np.sign(circle0[0, 0] * circle0[1, 1] - circle0[1, 0] * circle0[0, 1]) < 0: circle = circle[::-1] # start numbering from inner strike wall index = np.argmin(np.sqrt((circle[:, 0] - self['info']['rvsin']) ** 2 + (circle[:, 1] - self['info']['zvsin']) ** 2)) circle = np.vstack((circle, circle))[index : index + 4, :] for k, item in enumerate(['xpoint_inner_strike', 'xpoint_outer_strike', 'xpoint_outer_midplane', 'xpoint_inner_midplane']): try: self['info'][item] = circle[k] except IndexError: printe('Error parsing %s' % item) # regions are defined at midway points between the open separatrix points regions = circle + np.diff(np.vstack((circle, circle[0])), axis=0) / 2.0 for k, item in enumerate(['xpoint_private_region', 'xpoint_outer_region', 'xpoint_core_region', 'xpoint_inner_region']): try: self['info'][item] = regions[k] except IndexError: printe('Error parsing %s' % item) # logic for secondary xpoint evaluation starts here # find where Bz=0 on the opposite side of the primary X-point: this is xpoint2_start Bz_sep = self['flux'][self.nc - 1]['Bz'].copy() mask = self['flux'][self.nc - 1]['Z'] * np.sign(self['info']['xpoint'][1]) > 0 Bz_sep[mask] = np.nan index = np.nanargmin(abs(Bz_sep)) xpoint2_start = [self['flux'][self.nc - 1]['R'][index], self['flux'][self.nc - 1]['Z'][index]] # trace Bz=0 contour and find the contour line that passes closest to xpoint2_start: this is the rz_divider line Bz0 = contourPaths(self.Rin, self.Zin, Bz, [0], remove_boundary_points=True, smooth_factor=1)[0] d = [] for item in Bz0: d.append(np.min(np.sqrt((item.vertices[:, 0] - xpoint2_start[0]) ** 2 + (item.vertices[:, 1] - xpoint2_start[1]) ** 2))) rz_divider = Bz0[np.argmin(d)].vertices # evaluate Br along rz_divider line and consider only side opposite side of the primary X-point Br_divider = RectBivariateSplineNaN(self.Zin, self.Rin, Br).ev(rz_divider[:, 1], rz_divider[:, 0]) mask = (rz_divider[:, 1] * np.sign(self['info']['xpoint'][1])) < -abs(self['info']['xpoint'][1]) / 10.0 Br_divider = Br_divider[mask] rz_divider = rz_divider[mask, :] if abs(rz_divider[0, 1]) > abs(rz_divider[-1, 1]): rz_divider = rz_divider[::-1, :] Br_divider = Br_divider[::-1] # secondary xpoint where Br flips sign tmp = np.where(np.sign(Br_divider) != np.sign(Br_divider)[0])[0] if len(tmp): ix = tmp[0] self['info']['xpoint2'] = (rz_divider[ix - 1, :] + rz_divider[ix, :]) * 0.5 else: self['info']['xpoint2'] = None # limiter if ( hasattr(self, 'rlim') and self.rlim is not None and len(self.rlim) > 3 and hasattr(self, 'zlim') and self.zlim is not None and len(self.zlim) > 3 ): self['info']['rlim'] = self.rlim self['info']['zlim'] = self.zlim if not self.quiet: printi(' > Took {:}'.format(datetime.datetime.now() - t0))
[docs] def surface_integral(self, what): """ Cross section integral of a quantity :param what: quantity to be integrated specified as array at flux surface :return: array of the integration from core to edge """ return integrate.cumtrapz(self['avg']['vp'] * self['avg']['1/R'] * what, self['geo']['psi'], initial=0) / (2.0 * np.pi)
[docs] def volume_integral(self, what): """ Volume integral of a quantity :param what: quantity to be integrated specified as array at flux surface :return: array of the integration from core to edge """ return integrate.cumtrapz(self['avg']['vp'] * what, self['geo']['psi'], initial=0)
def _surfMean(self, what): tmp = np.zeros((self.nc)) whatfun = RectBivariateSplineNaN(self.Zin, self.Rin, what) for k in range(self.nc): pt = int(np.ceil(self['flux'][k]['R'].size / 8.0)) whatSamples = whatfun.ev(self['flux'][k]['Z'][::pt], self['flux'][k]['R'][::pt]) tmp[k] = np.mean(whatSamples) return tmp
[docs] @dynaLoad def plotFigure(self, *args, **kw): from matplotlib import pyplot pyplot.figure(*args) self.plot(**kw)
[docs] @dynaLoad def plot(self, only2D=False, info=False, label=None, **kw): from matplotlib import pyplot if not self.quiet: printi('Plotting ...') if not only2D: tmp = [] if 'geo' in self: tmp = ['geo_' + item for item in self['geo'].keys()] if 'avg' in self: tmp.extend(['avg_' + item for item in self['avg'].keys()]) nplot = len(tmp) cplot = int(np.floor(np.sqrt(nplot) / 2.0) * 2) rplot = int(np.ceil(nplot * 1.0 / cplot)) pyplot.subplots_adjust(wspace=0.35, hspace=0.0) for k, item in enumerate(tmp): r = int(np.floor(k * 1.0 / cplot)) c = k - r * cplot if k == 0: ax1 = pyplot.subplot(rplot, cplot + 2, r * (cplot + 2) + c + 1 + 2) ax = ax1 else: ax = pyplot.subplot(rplot, cplot + 2, r * (cplot + 2) + c + 1 + 2, sharex=ax1) ax.ticklabel_format(style='sci', scilimits=(-3, 3)) if item[:3] == 'avg' and item[4:] in self['avg']: pyplot.plot(self['levels'], self['avg'][item[4:]]) pyplot.text( 0.5, 0.9, '< ' + item[4:] + ' >', horizontalalignment='center', verticalalignment='top', size='medium', transform=ax.transAxes, ) elif item[:3] == 'geo' and item[4:] in self['geo']: pyplot.plot(self['levels'], self['geo'][item[4:]]) pyplot.text( 0.5, 0.8, item[4:], horizontalalignment='center', verticalalignment='top', size='medium', transform=ax.transAxes ) if label is not None: ax.lines[-1].set_label(label) if k < len(tmp) - cplot: pyplot.setp(ax.get_xticklabels(), visible=False) else: ax.set_xlabel('$\\psi$') pyplot.subplot(1, int((cplot + 2) // 2), 1) r = [] z = [] # Br=[] # Bz=[] for k in range(self.nc)[:: max([1, (self.nc - 1) // (33 - 1)])]: r = np.hstack((r, self['flux'][k]['R'], np.nan)) z = np.hstack((z, self['flux'][k]['Z'], np.nan)) # Br=np.hstack((Br,self['flux'][k]['Br'],np.nan)) # Bz=np.hstack((Bz,self['flux'][k]['Bz'],np.nan)) pyplot.plot(r, z, markeredgewidth=0) pyplot.plot(self['R0'], self['Z0'], '+', color=pyplot.gca().lines[-1].get_color()) if 'info' in self: if 'rlim' in self['info'] and 'zlim' in self['info']: pyplot.plot(self['info']['rlim'], self['info']['zlim'], 'k') if ( 'open_separatrix' in self['info'] and isinstance(self['info']['open_separatrix'], SortedDict) and 'R' in self['info']['open_separatrix'] and 'Z' in self['info']['open_separatrix'] ): pyplot.plot( self['info']['open_separatrix']['R'], self['info']['open_separatrix']['Z'], color=pyplot.gca().lines[-1].get_color() ) if info: for item in self['info']: if item.startswith('xpoint'): line = pyplot.plot(self['info'][item][0], self['info'][item][1], marker='.') pyplot.text(self['info'][item][0], self['info'][item][1], item, color=line[0].get_color()) # pyplot.quiver(r,z,Br,Bz,pivot='middle',units='xy') r = [] z = [] if 'sol' in self: for k in range(len(self['sol'])): r = np.hstack((r, self['sol'][k]['R'], np.nan)) z = np.hstack((z, self['sol'][k]['Z'], np.nan)) pyplot.plot(r, z, markeredgewidth=0, alpha=0.5, color=pyplot.gca().lines[-1].get_color()) pyplot.axis('tight') pyplot.gca().set_aspect('equal') pyplot.gca().set_frame_on(False)
[docs] def rz_miller_geometry(self, poloidal_resolution=101): ''' return R,Z coordinates for all flux surfaces from miller geometry coefficients in geo # based on gacode/gapy/src/gapy_geo.f90 :param poloidal_resolution: integer with number of equispaced points in toroidal angle, or array of toroidal angles :return: 2D arrays with (R, Z) flux surface coordinates ''' if isinstance(poloidal_resolution, int): t0 = np.linspace(0, 2 * np.pi, poloidal_resolution) else: t0 = poloidal_resolution x = np.arcsin(self['geo']['delta']) # R a = t0[:, np.newaxis] + x[np.newaxis, :] * np.sin(t0[:, np.newaxis]) r0 = self['geo']['R'][np.newaxis, :] + self['geo']['a'][np.newaxis, :] * np.cos(a) # Z a = t0[:, np.newaxis] + self['geo']['zeta'][np.newaxis, :] * np.sin(2 * t0[:, np.newaxis]) z0 = self['geo']['Z'][np.newaxis, :] + self['geo']['kap'][np.newaxis, :] * self['geo']['a'][np.newaxis, :] * np.sin(a) return r0, z0
def __deepcopy__(self, memo): return pickle.loads(pickle.dumps(self, pickle.HIGHEST_PROTOCOL))
[docs] @dynaLoad def sol(self, levels=31, packing=3, resolution=0.01, rlim=None, zlim=None, open_flx=None): ''' Trace open field lines flux surfaces in the SOL :param levels: where flux surfaces should be traced * integer number of flux surface * list of levels :param packing: if `levels` is integer, packing of flux surfaces close to the separatrix :param resolution: accuracy of the flux surface tracing :param rlim: list of R coordinates points where flux surfaces intersect limiter :param zlim: list of Z coordinates points where flux surfaces intersect limiter :param open_flx: dictionary with flux surface rhon value as keys of where to calculate SOL (passing this will not set the `sol` entry in the flux-surfaces class) :return: dictionary with SOL flux surface information ''' # pack more surfaces near the separatrix if is_int(levels): R = np.array([self['R0'], max(self.Rin)]) tmp = RectBivariateSplineNaN(self.Zin, self.Rin, self.PSIin).ev(R * 0 + self['Z0'], R) tmp = max((tmp - self.PSIaxis) / ((self.flx - self.PSIaxis) * self.maxPSI)) levels = pack_points(levels + 2, -1, packing) levels = (levels - min(levels)) / (max(levels) - min(levels)) * (tmp - 1) + 1 levels = levels[1:-1] if rlim is None and len(self.rlim) > 3: rlim = self.rlim if zlim is None and len(self.zlim) > 3: zlim = self.zlim if rlim is None or zlim is None: dd = 0.01 rlim = [min(self.Rin) + dd, max(self.Rin) - dd, max(self.Rin) - dd, min(self.Rin) + dd, min(self.Rin) + dd] zlim = [min(self.Zin) + dd, min(self.Zin) + dd, max(self.Zin) - dd, max(self.Zin) - dd, min(self.Zin) + dd] rlim = copy.deepcopy(rlim) zlim = copy.deepcopy(zlim) store_SOL = False if open_flx is None: store_SOL = True # SOL requires higher resolution self.changeResolution(resolution) # find SOL fied lines open_flx = self._findSurfaces(levels=levels) # midplane Rm = np.array([self['R0'], max(self.Rin)]) Zm = Rm * 0 + self['Z0'] SOL = SortedDict() for k, level in enumerate(open_flx.keys()): SOL[k] = SortedDict() SOL[k]['psi'] = level * (self.flx - self.PSIaxis) * self.maxPSI + self.PSIaxis SOL[k]['rhon'] = level SOL[k]['R'] = open_flx[level][:, 0] SOL[k]['Z'] = open_flx[level][:, 1] max_mid = line_intersect(np.array([Rm, Zm]).T, np.array([rlim, zlim]).T) if len(max_mid): max_mid = max_mid[0] else: printw('fluxsurfaces: there is no intersection between the horizontal line at the magnetic axis Z and the limiter') max_mid = [max(Rm), np.argmax(Rm)] def line_split(x1, x2): inter_midp, index_midp = line_intersect(x1, x2, True) index_midp = index_midp[0][0] inter_midp = inter_midp[0] if inter_midp[0] > max_mid[0]: return None inter_wall, index_wall = line_intersect(x1, np.array([rlim, zlim]).T, True) i = np.array([k[0] for k in index_wall]).astype(int) i1 = int(np.where(i == i[np.where(i < index_midp)[0]][-1])[0][0]) i2 = int(np.where(i == i[np.where(i >= index_midp)[0]][0])[0][0]) legs = ( np.vstack((x1[: index_wall[i1][0], :], inter_wall[i1])), np.vstack(([inter_wall[i1]], x1[index_wall[i1][0] + 1 : index_midp, :], [inter_midp])), np.vstack(([inter_midp], x1[index_midp + 1 : index_wall[i2][0], :], [inter_wall[i2]])), np.vstack(([inter_wall[i2]], x1[index_wall[i2][0] + 1 :, :])), ) if legs[1][-2][1] < legs[2][1][1]: legs = [np.flipud(legs[3]), np.flipud(legs[2]), np.flipud(legs[1]), np.flipud(legs[0])] # pyplot.plot(legs[0][:,0],legs[0][:,1],'b.') # pyplot.plot(legs[1][:,0],legs[1][:,1],'rx') # pyplot.plot(legs[2][:,0],legs[2][:,1],'b.') # pyplot.plot(legs[3][:,0],legs[3][:,1],'rx') # print(map(len,legs)) return legs Br, Bz = self._calcBrBz() Brfun = RectBivariateSplineNaN(self.Zin, self.Rin, Br) Bzfun = RectBivariateSplineNaN(self.Zin, self.Rin, Bz) valid_levels = [] sol_levels = [] for k in range(len(SOL)): try: legs = line_split(np.array([SOL[k]['R'], SOL[k]['Z']]).T, np.array([Rm, Zm]).T) except IndexError: for k1 in range(k, len(SOL)): del SOL[k1] break if legs is not None: r = SOL[k]['R'] = np.hstack((legs[0][:-1, 0], legs[1][:-1, 0], legs[2][:-1, 0], legs[3][:, 0])) z = SOL[k]['Z'] = np.hstack((legs[0][:-1, 1], legs[1][:-1, 1], legs[2][:-1, 1], legs[3][:, 1])) w1 = len(legs[0][:-1, 0]) ii = len(legs[0][:-1, 0]) + len(legs[1][:-1, 0]) w2 = len(legs[0][:-1, 0]) + len(legs[1][:-1, 0]) + len(legs[2][:-1, 0]) sol_levels.append(SOL[k]['rhon']) else: continue valid_levels.append(k) SOL[k]['Br'] = Brfun.ev(z, r) SOL[k]['Bz'] = Bzfun.ev(z, r) Bt = np.abs(self['BCENTR'] * self['RCENTR'] / r) Bp = np.sqrt(SOL[k]['Br'] ** 2 + SOL[k]['Bz'] ** 2) dp = np.sqrt(np.gradient(r) ** 2 + np.gradient(z) ** 2) pitch = np.sqrt(1 + (Bt / Bp) ** 2) s = np.cumsum(pitch * dp) s = np.abs(s - s[ii]) SOL[k]['s'] = s for item in SOL[k]: if isinstance(SOL[k][item], np.ndarray): SOL[k][item] = SOL[k][item][w1 : w2 + 1] SOL[k]['mid_index'] = ii - w1 SOL[k]['rho'] = SOL[k]['rhon'] * self['geo']['rho'][-1] SOLV = SortedDict() for k, v in enumerate(valid_levels): SOLV[k] = SOL[v] if store_SOL: self['sol'] = SOLV self['sol_levels'] = np.array([s['psi'] for s in SOLV.values()]) return SOL, sol_levels
[docs] @dynaLoad def to_omas(self, ods=None, time_index=0): ''' translate fluxSurfaces class to OMAS data structure :param ods: input ods to which data is added :param time_index: time index to which data is added :return: ODS ''' if ods is None: ods = ODS() cocosio = self.cocosin # align psi grid psi = self['geo']['psi'] if 'equilibrium.time_slice.%d.profiles_1d.psi' % time_index in ods: with omas_environment(ods, cocosio=cocosio): m0 = psi[0] M0 = psi[-1] m1 = ods['equilibrium.time_slice.%d.profiles_1d.psi' % time_index][0] M1 = ods['equilibrium.time_slice.%d.profiles_1d.psi' % time_index][-1] psi = (psi - m0) / (M0 - m0) * (M1 - m1) + m1 coordsio = {'equilibrium.time_slice.%d.profiles_1d.psi' % time_index: psi} # add fluxSurfaces quantities with omas_environment(ods, cocosio=cocosio, coordsio=coordsio): eq1d = ods['equilibrium.time_slice'][time_index]['profiles_1d'] glob = ods['equilibrium.time_slice'][time_index]['global_quantities'] eq1d['rho_tor_norm'] = self['geo']['rhon'] eq1d['rho_tor'] = self['geo']['rho'] eq1d['r_inboard'] = self['geo']['R'] - self['geo']['a'] eq1d['r_outboard'] = self['geo']['R'] + self['geo']['a'] eq1d['volume'] = self['geo']['vol'] eq1d['triangularity_upper'] = self['geo']['delu'] eq1d['triangularity_lower'] = self['geo']['dell'] # eq1d['average_outer_squareness'] = self['geo']['zeta'] # IMAS does not have a placeholder for this quantity yet eq1d['squareness_lower_inner'] = self['geo']['zeta'] # self['geo']['zetail'] eq1d['squareness_upper_inner'] = self['geo']['zeta'] # self['geo']['zetaiu'] eq1d['squareness_lower_outer'] = self['geo']['zeta'] # self['geo']['zetaol'] eq1d['squareness_upper_outer'] = self['geo']['zeta'] # self['geo']['zetaou'] eq1d['trapped_fraction'] = 1.0 - self['avg']['fc'] eq1d['surface'] = self['geo']['surfArea'] eq1d['q'] = self['avg']['q'] eq1d['pressure'] = self['avg']['P'] eq1d['phi'] = self['geo']['phi'] eq1d['j_tor'] = self['avg']['Jt/R'] / self['avg']['1/R'] eq1d['gm9'] = self['avg']['1/R'] eq1d['gm8'] = self['avg']['R'] eq1d['gm5'] = self['avg']['Btot**2'] eq1d['gm2'] = self['avg']['gcap'] / self['RCENTR'] ** 2 eq1d['gm1'] = self['avg']['1/R**2'] eq1d['f'] = self['avg']['F'] eq1d['elongation'] = 0.5 * (self['geo']['kapu'] + self['geo']['kapl']) eq1d['dvolume_drho_tor'] = deriv(self['geo']['rho'], self['geo']['vol']) eq1d['dvolume_dpsi'] = deriv(self['geo']['psi'], self['geo']['vol']) eq1d['dpsi_drho_tor'] = deriv(self['geo']['rho'], self['geo']['psi']) eq1d['darea_drho_tor'] = deriv(self['geo']['rho'], self['geo']['cxArea']) eq1d['darea_dpsi'] = deriv(self['geo']['psi'], self['geo']['cxArea']) tmp = [ np.sqrt(self['flux'][k]['Br'] ** 2 + self['flux'][k]['Bz'] ** 2 + (self['flux'][k]['F'] / self['flux'][k]['R']) ** 2) for k in self['flux'] ] eq1d['b_field_min'] = np.array([np.min(v) for v in tmp]) eq1d['b_field_max'] = np.array([np.max(v) for v in tmp]) eq1d['b_field_average'] = np.array([np.mean(v) for v in tmp]) eq1d['area'] = self['geo']['cxArea'] eq1d['geometric_axis.r'] = self['geo']['R'] eq1d['geometric_axis.z'] = self['geo']['Z'] eq1d['centroid.r'] = self['geo']['R_centroid'] eq1d['centroid.z'] = self['geo']['Z_centroid'] eq1d['centroid.r_max'] = self['geo']['Rmax_centroid'] eq1d['centroid.r_min'] = self['geo']['Rmin_centroid'] glob['beta_normal'] = self['avg']['beta_n'][-1] glob['beta_tor'] = self['avg']['beta_t'][-1] glob['beta_pol'] = self['avg']['beta_p'][-1] glob['magnetic_axis.r'] = eq1d['geometric_axis.r'][0] glob['magnetic_axis.z'] = eq1d['geometric_axis.z'][0] glob['li_3'] = self['info']['internal_inductance']['li_(3)_IMAS'] glob['area'] = self['geo']['cxArea'][-1] return ods
[docs] def from_omas(self, ods, time_index=0): ''' populate fluxSurfaces class from OMAS data structure :param ods: input ods to which data is added :param time_index: time index to which data is added :return: ODS ''' eq = ods['equilibrium.time_slice'][time_index] eq1d = ods['equilibrium.time_slice'][time_index]['profiles_1d'] psin = eq1d['psi'] psin = (psin - min(psin)) / (max(psin) - min(psin)) if 'profiles_2d.0.b_field_tor' not in eq: ods.physics_equilibrium_consistent() rlim = 'wall.description_2d.%d.limiter.unit.0.outline.r' % time_index zlim = 'wall.description_2d.%d.limiter.unit.0.outline.z' % time_index if rlim in ods and zlim in ods: rlim = ods[rlim] zlim = ods[zlim] else: rlim = zlim = None self.__init__( Rin=eq['profiles_2d.0.r'][:, 0], Zin=eq['profiles_2d.0.z'][0, :], PSIin=eq['profiles_2d.0.psi'].T, Btin=eq['profiles_2d.0.b_field_tor'].T, Rcenter=ods['equilibrium.vacuum_toroidal_field.r0'], F=eq1d['f'], P=eq1d['pressure'], levels=psin, cocosin=ods.cocos, rlim=rlim, zlim=zlim, quiet=True, )
[docs]def boundaryShape( a, eps, kapu, kapl, delu, dell, zetaou, zetaiu, zetail, zetaol, zoffset, upnull=False, lonull=False, npts=90, doPlot=False, newsq=np.zeros(4), **kw, ): ''' Function used to generate boundary shapes based on `T. C. Luce, PPCF, 55 9 (2013)` Direct Python translation of the IDL program /u/luce/idl/shapemaker3.pro :param a: minor radius :param eps: aspect ratio :param kapu: upper elongation :param lkap: lower elongation :param delu: upper triangularity :param dell: lower triangularity :param zetaou: upper outer squareness :param zetaiu: upper inner squareness :param zetail: lower inner squareness :param zetaol: lower outer squareness :param zoffset: z-offset :param upnull: toggle upper x-point :param lonull: toggle lower x-point :param npts: int number of points (per quadrant) :param doPlot: plot boundary shape construction :param newsq: A 4 element array, into which the new squareness values are stored :return: tuple with arrays of r,z,zref >> boundaryShape(a=0.608,eps=0.374,kapu=1.920,kapl=1.719,delu=0.769,dell=0.463,zetaou=-0.155,zetaiu=-0.255,zetail=-0.174,zetaol=-0.227,zoffset=0.000,upnull=False,lonull=False,doPlot=True) ''' ukap = kapu lkap = kapl utri = delu ltri = dell uosq = zetaou uisq = zetaiu lisq = zetail losq = zetaol amin = a newsq[0:4] = [uosq, uisq, lisq, losq] if is_int(npts): ang = np.linspace(0, 2 * np.pi, (npts * 4 + 1)) else: ang = npts i1 = np.where((ang >= 0 * np.pi / 2.0) & (ang < 1 * np.pi / 2.0)) i2 = np.where((ang >= 1 * np.pi / 2.0) & (ang < 2 * np.pi / 2.0)) i3 = np.where((ang >= 2 * np.pi / 2.0) & (ang < 3 * np.pi / 2.0)) i4 = np.where((ang >= 3 * np.pi / 2.0) & (ang < 4 * np.pi / 2.0)) ang1 = ang[i1] ang2 = ang[i2] ang3 = ang[i3] ang4 = ang[i4] rsr2 = 1.0 / np.sqrt(2.0) cc = 1.0 - rsr2 if uosq < -1.0 * rsr2: uosq = -1.0 * rsr2 if uisq < -1.0 * rsr2: uisq = -1.0 * rsr2 if lisq < -1.0 * rsr2: lisq = -1.0 * rsr2 if losq < -1.0 * rsr2: losq = -1.0 * rsr2 # n1=-alog(2.)/alog(uosq*cc+rsr2) n1 = -np.log(2.0) / np.log(uosq * cc + rsr2) # r1=amin*(1./eps-utri)+amin*(1.+utri)*cos(ang1) r1 = amin * (1.0 / eps - utri) + amin * (1.0 + utri) * np.cos(ang1) ** (2.0 / n1) # z1=zoffset+amin*ukap*sin(ang1) ^(2./n1) z1 = zoffset + amin * ukap * np.sin(ang1) ** (2.0 / n1) # z1ref=zoffset+amin*ukap*sin(ang1) z1ref = zoffset + amin * ukap * np.sin(ang1) # n2=-alog(2.)/alog(uisq*cc+rsr2) n2 = -np.log(2.0) / np.log(uisq * cc + rsr2) # r2=amin*(1./eps-utri)-amin*(1.-utri)*abs(cos(ang2)) r2 = amin * (1.0 / eps - utri) - amin * (1.0 - utri) * abs(np.cos(ang2)) ** (2.0 / n2) # z2=zoffset+amin*ukap*sin(ang2) ^(2./n2) z2 = zoffset + amin * ukap * np.sin(ang2) ** (2.0 / n2) # z2ref=zoffset+amin*ukap*sin(ang2) z2ref = zoffset + amin * ukap * np.sin(ang2) if upnull: ## f=findgen(99)/100.+0.01 f = np.linspace(0.01, 1, 100) ## n=findgen(99)/25.+1.04 n = np.linspace(1.04, 5, 100) ## ## h1=1.-(1.-uosq)*cc h1 = 1.0 - (1.0 - uosq) * cc ## h2=1.-(1.-uisq)*cc h2 = 1.0 - (1.0 - uisq) * cc ## ## a1=amin*(1.+utri) a1 = amin * (1.0 + utri) ## a2=amin*(1.-utri) a2 = amin * (1.0 - utri) ## b=amin*ukap b = amin * ukap ## ## if (utri ge 0.) then c1=utri-1. else c1=-1./(1.+utri) c1 = utri - 1 if utri >= 0 else -1.0 / (1.0 + utri) ## if (utri ge 0.) then c2=-1./(1.-utri) else c2=-1.*(1.+utri) c2 = -1.0 / (1.0 - utri) if utri >= 0.0 else -1.0 * (1.0 + utri) ## ## y1q1=fltarr(99,99) y1q1 = np.zeros((100, 100)) ## y2q1=fltarr(99,99) y2q1 = np.zeros((100, 100)) ## y1q2=fltarr(99,99) y1q2 = np.zeros((100, 100)) ## y2q2=fltarr(99,99) y2q2 = np.zeros((100, 100)) ## ## for i=0,98 do begin for i in range(y1q1.shape[0]): ## for j=0,98 do begin for j in range(y1q1.shape[1]): ## y1q1(i,j)=(f(i)+h1*(1.-f(i))) ^n(j)+(1.-f(i) ^n(j))*h1 ^n(j)-1. y1q1[j, i] = (f[i] + h1 * (1.0 - f[i])) ** n[j] + (1.0 - f[i] ** n[j]) * h1 ** n[j] - 1.0 ## y2q1(i,j)=f(i) ^(n(j)-1.)*(f(i)*(c1+b/a1)-b/a1)-c1 y2q1[j, i] = f[i] ** (n[j] - 1.0) * (f[i] * (c1 + b / a1) - b / a1) - c1 ## y1q2(i,j)=(f(i)+h2*(1.-f(i))) ^n(j)+(1.-f(i) ^n(j))*h2^n(j)-1. y1q2[j, i] = (f[i] + h2 * (1.0 - f[i])) ** n[j] + (1.0 - f[i] ** n[j]) * h2 ** n[j] - 1.0 ## y2q2(i,j)=f(i) ^(n(j)-1.)*(f(i)*(c2+b/a2)-b/a2)-c2 y2q2[j, i] = f[i] ** (n[j] - 1.0) * (f[i] * (c2 + b / a2) - b / a2) - c2 ## endfor ## endfor ## contour,y1q1,f,n,/overplot,level=[0.0],path_xy=xy1q1,path_info=info,closed=0,/path_data_coords xy1q1 = contourPaths(f, n, y1q1, [0], remove_boundary_points=True)[0][0].vertices ## contour,y2q1,f,n,/overplot,level=[0.0],path_xy=xy2q1,path_info=info,closed=0,/path_data_coords xy2q1 = contourPaths(f, n, y2q1, [0], remove_boundary_points=True)[0][0].vertices ## contour,y1q2,f,n,/overplot,level=[0.0],path_xy=xy1q2,path_info=info,closed=0,/path_data_coords xy1q2 = contourPaths(f, n, y1q2, [0], remove_boundary_points=True)[0][0].vertices ## contour,y2q2,f,n,/overplot,level=[0.0],path_xy=xy2q2,path_info=info,closed=0,/path_data_coords xy2q2 = contourPaths(f, n, y2q2, [0], remove_boundary_points=True)[0][0].vertices ## ## y1q1sol=interpol(xy1q1(1,*),xy1q1(0,*),f) y1q1sol = np.interp(f, xy1q1[:, 0], xy1q1[:, 1]) ## y2q1sol=interpol(xy2q1(1,*),xy2q1(0,*),f) y2q1sol = np.interp(f, xy2q1[:, 0], xy2q1[:, 1]) ## y1q2sol=interpol(xy1q2(1,*),xy1q2(0,*),f) y1q2sol = np.interp(f, xy1q2[:, 0], xy1q2[:, 1]) ## y2q2sol=interpol(xy2q2(1,*),xy2q2(0,*),f) y2q2sol = np.interp(f, xy2q2[:, 0], xy2q2[:, 1]) ## maxdiffq1=max(y1q1sol-y2q1sol) maxdiffq1 = max(y1q1sol - y2q1sol) ## mindiffq1=min(y1q1sol-y2q1sol) mindiffq1 = min(y1q1sol - y2q1sol) ## maxdiffq2=max(y1q2sol-y2q2sol) maxdiffq2 = max(y1q2sol - y2q2sol) ## mindiffq2=min(y1q2sol-y2q2sol) mindiffq2 = min(y1q2sol - y2q2sol) ## ## if (maxdiffq1/mindiffq1 lt 0.) then begin if maxdiffq1 / mindiffq1 < 0.0: ## y12q1sol=min(abs(y1q1sol-y2q1sol),imin) y12q1sol = min(abs(y1q1sol - y2q1sol)) imin = np.argmin(abs(y1q1sol - y2q1sol)) ## fsolq1=f(imin) fsolq1 = f[imin] ## nsolq1=y1q1sol(imin) nsolq1 = y1q1sol[imin] ## gsolq1=(1.-fsolq1^nsolq1)^(1./nsolq1) gsolq1 = (1.0 - fsolq1**nsolq1) ** (1.0 / nsolq1) ## endif else begin else: ## if (maxdiffq1 gt 0.) then begin if maxdiffq1 > 0: ## y1new=(f[94]+h1*(1.-f[94]))^y2q1sol[94]+(1.-f[94]^y2q1sol[94])*h1^y2q1sol[94]-1. y1new = (f[94] + h1 * (1.0 - f[94])) ** y2q1sol[94] + (1.0 - f[94] ** y2q1sol[94]) * h1 ** y2q1sol[94] - 1.0 ## y2new=f[94]^(y2q1sol[94]-1.)*(f[94]*(c1+b/a1)-b/a1)-c1 y2new = f[94] ** (y2q1sol[94] - 1.0) * (f[94] * (c1 + b / a1) - b / a1) - c1 ## while (y1new gt y2new) do begin while y1new > y2new: ## h1=h1-0.01 h1 = h1 - 0.01 ## y1new=(f[94]+h1*(1.-f[94]))^y2q1sol[94]+(1.-f[94]^y2q1sol[94])*h1^y2q1sol[94]-1. y1new = (f[94] + h1 * (1.0 - f[94])) ** y2q1sol[94] + (1.0 - f[94] ** y2q1sol[94]) * h1 ** y2q1sol[94] - 1.0 ## endwhile ## fsolq1=f[94] fsolq1 = f[94] ## nsolq1=y2q1sol[94] nsolq1 = y2q1sol[94] ## gsolq1=(1.-fsolq1^nsolq1)^(1./nsolq1) gsolq1 = (1.0 - fsolq1**nsolq1) ** (1.0 / nsolq1) ## endif else begin else: ## y1new=(f[4]+h1*(1.-f[4]))^y2q1sol[4]+(1.-f[4]^y2q1sol[4])*h1^y2q1sol[4]-1. y1new = (f[4] + h1 * (1.0 - f[4])) ** y2q1sol[4] + (1.0 - f[4] ** y2q1sol[4]) * h1 ** y2q1sol[4] - 1.0 ## y2new=f[4]^(y2q1sol[4]-1.)*(f[4]*(c1+b/a1)-b/a1)-c1 y2new = f[4] ** (y2q1sol[4] - 1.0) * (f[4] * (c1 + b / a1) - b / a1) - c1 ## while (y1new lt y2new) do begin while y1new < y2new: ## h1=h1+0.01 h1 = h1 + 0.01 ## y1new=(f[4]+h1*(1.-f[4]))^y2q1sol[4]+(1.-f[4]^y2q1sol[4])*h1^y2q1sol[4]-1. y1new = (f[4] + h1 * (1.0 - f[4])) ** y2q1sol[4] + (1.0 - f[4] ** y2q1sol[4]) * h1 ** y2q1sol[4] - 1.0 ## endwhile ## fsolq1=f[4] fsolq1 = f[4] ## nsolq1=y2q1sol[4] nsolq1 = y2q1sol[4] ## gsolq1=(1.-fsolq1^nsolq1)^(1./nsolq1) gsolq1 = (1.0 - fsolq1**nsolq1) ** (1.0 / nsolq1) ## endelse ## sqnew1=1.-(1.-h1)/cc sqnew1 = 1.0 - (1.0 - h1) / cc newsq[0] = sqnew1 ## endelse ## ## alpha1=a1/(1.-fsolq1) alpha1 = a1 / (1.0 - fsolq1) ## beta1=b/gsolq1 beta1 = b / gsolq1 ## ## y1=beta1*(1.-((r1-amin*(1./eps+1.))/alpha1+1.)^nsolq1)^(1./nsolq1) y1 = beta1 * (1.0 - ((r1 - amin * (1.0 / eps + 1.0)) / alpha1 + 1.0) ** nsolq1) ** (1.0 / nsolq1) ## z1=y1+zoffset z1 = y1 + zoffset ## ## if (maxdiffq2/mindiffq2 lt 0.) then begin if maxdiffq2 / mindiffq2 < 0.0: ## y12q2sol=min(abs(y1q2sol-y2q2sol),imin) y12q2sol = min(abs(y1q2sol - y2q2sol)) imin = np.argmin(abs(y1q2sol - y2q2sol)) ## fsolq2=f(imin) fsolq2 = f[imin] ## nsolq2=y1q2sol(imin) nsolq2 = y1q2sol[imin] ## gsolq2=(1.-fsolq2^nsolq2)^(1./nsolq2) gsolq2 = (1.0 - fsolq2**nsolq2) ** (1.0 / nsolq2) ## endif else begin else: ## if (maxdiffq2 gt 0.) then begin if maxdiffq2 > 0.0: ## y1new=(f[94]+h2*(1.-f[94]))^y2q2sol[94]+(1.-f[94]^y2q2sol[94])*h2^y2q2sol[94]-1. y1new = (f[94] + h2 * (1.0 - f[94])) ** y2q2sol[94] + (1.0 - f[94] ** y2q2sol[94]) * h2 ** y2q2sol[94] - 1.0 ## y2new=f[94]^(y2q2sol[94]-1.)*(f[94]*(c2+b/a2)-b/a2)-c2 y2new = f[94] ** (y2q2sol[94] - 1.0) * (f[94] * (c2 + b / a2) - b / a2) - c2 ## while (y1new gt y2new) do begin while y1new > y2new: ## h2=h2-0.01 h2 = h2 - 0.01 ## y1new=(f[94]+h2*(1.-f[94]))^y2q2sol[94]+(1.-f[94]^y2q2sol[94])*h2^y2q2sol[94]-1. y1new = (f[94] + h2 * (1.0 - f[94])) ** y2q2sol[94] + (1.0 - f[94] ** y2q2sol[94]) * h2 ** y2q2sol[94] - 1.0 ## endwhile ## fsolq2=f[94] fsolq2 = f[94] ## nsolq2=y2q2sol[94] nsolq2 = y2q2sol[94] ## gsolq2=(1.-fsolq2^nsolq2)^(1./nsolq2) gsolq2 = (1.0 - fsolq2**nsolq2) ** (1.0 / nsolq2) ## endif else begin else: ## y1new=(f[4]+h2*(1.-f[4]))^y2q2sol[4]+(1.-f[4]^y2q2sol[4])*h2^y2q2sol[4]-1. y1new = (f[4] + h2 * (1.0 - f[4])) ** y2q2sol[4] + (1.0 - f[4] ** y2q2sol[4]) * h2 ** y2q2sol[4] - 1.0 ## y2new=f[4]^(y2q2sol[4]-1.)*(f[4]*(c2+b/a2)-b/a2)-c2 y2new = f[4] ** (y2q2sol[4] - 1.0) * (f[4] * (c2 + b / a2) - b / a2) - c2 ## while (y1new lt y2new) do begin while y1new < y2new: ## h2=h2+0.01 h2 = h2 + 0.01 ## y1new=(f[4]+h2*(1.-f[4]))^y2q2sol[4]+(1.-f[4]^y2q2sol[4])*h2^y2q2sol[4]-1. y1new = (f[4] + h2 * (1.0 - f[4])) ** y2q2sol[4] + (1.0 - f[4] ** y2q2sol[4]) * h2 ** y2q2sol[4] - 1.0 ## endwhile ## fsolq2=f[4] fsolq2 = f[4] ## nsolq2=y2q2sol[4] nsolq2 = y2q2sol[4] ## gsolq2=(1.-fsolq2^nsolq2)^(1./nsolq2) gsolq2 = (1.0 - fsolq2**nsolq2) ** (1.0 / nsolq2) ## endelse ## sqnew2=1.-(1.-h2)/cc sqnew2 = 1.0 - (1.0 - h2) / cc newsq[1] = sqnew2 ## endelse ## ## alpha2=a2/(1.-fsolq2) alpha2 = a2 / (1.0 - fsolq2) ## beta2=b/gsolq2 beta2 = b / gsolq2 ## ## y2=beta2*(1.-(1.+(amin*(1./eps-1.)-r2)/alpha2)^nsolq2)^(1./nsolq2) y2 = beta2 * (1.0 - (1.0 + (amin * (1.0 / eps - 1.0) - r2) / alpha2) ** nsolq2) ** (1.0 / nsolq2) ## z2=y2+zoffset z2 = y2 + zoffset ## endif # n3=-alog(2.)/alog(lisq*cc+rsr2) n3 = -np.log(2.0) / np.log(lisq * cc + rsr2) # r3=amin*(1./eps-ltri)-amin*(1.-ltri)*abs(cos(ang(180:269))) r3 = amin * (1.0 / eps - ltri) - amin * (1.0 - ltri) * abs(np.cos(ang3)) ** (2.0 / n3) # z3=zoffset-amin*lkap*abs(sin(ang(180:269))) ^(2./n3) z3 = zoffset - amin * lkap * abs(np.sin(ang3)) ** (2.0 / n3) # z3ref=zoffset+amin*lkap*sin(ang(180:269)) z3ref = zoffset + amin * lkap * np.sin(ang3) # n4=-alog(2.)/alog(losq*cc+rsr2) n4 = -np.log(2.0) / np.log(losq * cc + rsr2) # r4=amin*(1./eps-ltri)+amin*(1.+ltri)*cos(ang(270:359)) r4 = amin * (1.0 / eps - ltri) + amin * (1.0 + ltri) * abs(np.cos(ang4)) ** (2.0 / n4) # z4=zoffset-amin*lkap*abs(sin(ang(270:359))) ^(2./n4) z4 = zoffset - amin * lkap * abs(np.sin(ang4)) ** (2.0 / n4) # z4ref=zoffset+amin*lkap*sin(ang(270:359)) z4ref = zoffset + amin * lkap * np.sin(ang4) if lonull: # f=findgen(99)/100.+0.01 f = np.arange(99) / 100.0 + 0.01 # n=findgen(99)/25.+1.04 n = np.arange(99) / 25.0 + 1.04 # h4=1.-(1.-losq)*cc h4 = 1.0 - (1.0 - losq) * cc # h3=1.-(1.-lisq)*cc h3 = 1.0 - (1.0 - lisq) * cc # a4=amin*(1.+ltri) a4 = amin * (1.0 + ltri) # a3=amin*(1.-ltri) a3 = amin * (1.0 - ltri) # b=amin*lkap b = amin * lkap # if (ltri ge 0.) then c4=ltri-1. else c4=-1./(1.+ltri) c4 = ltri - 1.0 if (ltri >= 0.0) else -1.0 / (1.0 + ltri) # if (ltri ge 0.) then c3=-1./(1.-ltri) else c3=-1.*(1.+ltri) c3 = -1.0 / (1.0 - ltri) if (ltri >= 0.0) else -1.0 * (1.0 + ltri) # y1q4=fltarr(99,99) y1q4 = np.zeros((99, 99)) # y2q4=fltarr(99,99) y2q4 = np.zeros((99, 99)) # y1q3=fltarr(99,99) y1q3 = np.zeros((99, 99)) # y2q3=fltarr(99,99) y2q3 = np.zeros((99, 99)) # for i=0,98 do begin for i in range(len(f)): # for j=0,98 do begin for j in range(len(n)): # y1q4(i,j)=(f(i)+h4*(1.-f(i))) ^n(j)+(1.-f(i) ^n(j))*h4 ^n(j)-1. y1q4[j, i] = (f[i] + h4 * (1.0 - f[i])) ** n[j] + (1.0 - f[i] ** n[j]) * h4 ** n[j] - 1.0 # y2q4(i,j)=f(i) ^(n(j)-1.)*(f(i)*(c4+b/a4)-b/a4)-c4 y2q4[j, i] = f[i] ** (n[j] - 1.0) * (f[i] * (c4 + b / a4) - b / a4) - c4 # y1q3(i,j)=(f(i)+h3*(1.-f(i))) ^n(j)+(1.-f(i) ^n(j))*h3 ^n(j)-1. y1q3[j, i] = (f[i] + h3 * (1.0 - f[i])) ** n[j] + (1.0 - f[i] ** n[j]) * h3 ** n[j] - 1.0 # y2q3(i,j)=f(i) ^(n(j)-1.)*(f(i)*(c3+b/a3)-b/a3)-c3 y2q3[j, i] = f[i] ** (n[j] - 1.0) * (f[i] * (c3 + b / a3) - b / a3) - c3 # endfor # endfor # contour,y1q4,f,n,/overplot,level=[0.0],path_xy=xy1q4,path_info=info,closed=0,/path_data_coords xy1q4 = contourPaths(f, n, y1q4, [0], remove_boundary_points=True)[0][0].vertices # contour,y2q4,f,n,/overplot,level=[0.0],path_xy=xy2q4,path_info=info,closed=0,/path_data_coords xy2q4 = contourPaths(f, n, y2q4, [0], remove_boundary_points=True)[0][0].vertices # contour,y1q3,f,n,/overplot,level=[0.0],path_xy=xy1q3,path_info=info,closed=0,/path_data_coords xy1q3 = contourPaths(f, n, y1q3, [0], remove_boundary_points=True)[0][0].vertices # contour,y2q3,f,n,/overplot,level=[0.0],path_xy=xy2q3,path_info=info,closed=0,/path_data_coords xy2q3 = contourPaths(f, n, y2q3, [0], remove_boundary_points=True)[0][0].vertices # y1q4sol=interpol(xy1q4(1,*),xy1q4(0,*),f) y1q4sol = np.interp(f, xy1q4[:, 0], xy1q4[:, 1]) # y2q4sol=interpol(xy2q4(1,*),xy2q4(0,*),f) y2q4sol = np.interp(f, xy2q4[:, 0], xy2q4[:, 1]) # y1q3sol=interpol(xy1q3(1,*),xy1q3(0,*),f) y1q3sol = np.interp(f, xy1q3[:, 0], xy1q3[:, 1]) # y2q3sol=interpol(xy2q3(1,*),xy2q3(0,*),f) y2q3sol = np.interp(f, xy2q3[:, 0], xy2q3[:, 1]) # maxdiffq4=max(y1q4sol-y2q4sol) maxdiffq4 = max(y1q4sol - y2q4sol) # mindiffq4=min(y1q4sol-y2q4sol) mindiffq4 = min(y1q4sol - y2q4sol) # maxdiffq3=max(y1q3sol-y2q3sol) maxdiffq3 = max(y1q3sol - y2q3sol) # mindiffq3=min(y1q3sol-y2q3sol) mindiffq3 = min(y1q3sol - y2q3sol) # if (maxdiffq4/mindiffq4 lt 0.) then begin if maxdiffq4 / mindiffq4 < 0.0: # y12q4sol=min(abs(y1q4sol-y2q4sol),imin) y12q4sol = min(abs(y1q4sol - y2q4sol)) imin = np.argmin(abs(y1q4sol - y2q4sol)) # fsolq4=f(imin) fsolq4 = f[imin] # nsolq4=y1q4sol(imin) nsolq4 = y1q4sol[imin] # gsolq4=(1.-fsolq4 ^nsolq4) ^(1./nsolq4) gsolq4 = (1.0 - fsolq4**nsolq4) ** (1.0 / nsolq4) # endif else begin else: # if (maxdiffq4 gt 0.) then begin if maxdiffq4 > 0.0: # y1new=(f(94)+h4*(1.-f(94))) ^y2q4sol(94)+(1.-f(94) ^y2q4sol(94))*h4 ^y2q4sol(94)-1. y1new = (f[94] + h4 * (1.0 - f[94])) ** y2q4sol[94] + (1.0 - f[94] ** y2q4sol[94]) * h4 ** y2q4sol[94] - 1.0 # y2new=f(94) ^(y2q4sol(94)-1.)*(f(94)*(c4+b/a4)-b/a4)-c4 y2new = f[94] ** (y2q4sol[94] - 1.0) * (f[94] * (c4 + b / a4) - b / a4) - c4 # while (y1new gt y2new) do begin while y1new > y2new: # h4=h4-0.01 h4 = h4 - 0.01 # y1new=(f(94)+h4*(1.-f(94))) ^y2q4sol(94)+(1.-f(94) ^y2q4sol(94))*h4 ^y2q4sol(94)-1. y1new = (f[94] + h4 * (1.0 - f[94])) ** y2q4sol[94] + (1.0 - f[94] ** y2q4sol[94]) * h4 ** y2q4sol[94] - 1.0 # endwhile # fsolq4=f(94) fsolq4 = f[94] # nsolq4=y2q4sol(94) nsolq4 = y2q4sol[94] # gsolq4=(1.-fsolq4 ^nsolq4) ^(1./nsolq4) gsolq4 = (1.0 - fsolq4**nsolq4) ** (1.0 / nsolq4) # endif else begin else: # y1new=(f(4)+h4*(1.-f(4))) ^y2q4sol(4)+(1.-f(4) ^y2q4sol(4))*h4 ^y2q4sol(4)-1. y1new = (f[4] + h4 * (1.0 - f[4])) ** y2q4sol[4] + (1.0 - f[4] ** y2q4sol[4]) * h4 ** y2q4sol[4] - 1.0 # y2new=f(4) ^(y2q4sol(4)-1.)*(f(4)*(c4+b/a4)-b/a4)-c4 y2new = f[4] ** (y2q4sol[4] - 1.0) * (f[4] * (c4 + b / a4) - b / a4) - c4 # while (y1new lt y2new) do begin while y1new < y2new: # h4=h4+0.01 h4 = h4 + 0.01 # y1new=(f(4)+h4*(1.-f(4))) ^y2q4sol(4)+(1.-f(4) ^y2q4sol(4))*h4 ^y2q4sol(4)-1. y1new = (f[4] + h4 * (1.0 - f[4])) ** y2q4sol[4] + (1.0 - f[4] ** y2q4sol[4]) * h4 ** y2q4sol[4] - 1.0 # endwhile # fsolq4=f(4) fsolq4 = f[4] # nsolq4=y2q4sol(4) nsolq4 = y2q4sol[4] # gsolq4=(1.-fsolq4 ^nsolq4) ^(1./nsolq4) gsolq4 = (1.0 - fsolq4**nsolq4) ** (1.0 / nsolq4) # endelse # sqnew4=1.-(1.-h4)/cc sqnew4 = 1.0 - (1.0 - h4) / cc newsq[3] = sqnew4 # endelse # alpha4=a4/(1.-fsolq4) alpha4 = a4 / (1.0 - fsolq4) # beta4=b/gsolq4 beta4 = b / gsolq4 # y4=-1.*(beta4*(1.-((r4-amin*(1./eps+1.))/alpha4+1.) ^nsolq4) ^(1./nsolq4)) y4 = -1.0 * (beta4 * (1.0 - ((r4 - amin * (1.0 / eps + 1.0)) / alpha4 + 1.0) ** nsolq4) ** (1.0 / nsolq4)) # z4=y4+zoffset z4 = y4 + zoffset # if (maxdiffq3/mindiffq3 lt 0.) then begin if maxdiffq3 / mindiffq3 < 0.0: # y12q3sol=min(abs(y1q3sol-y2q3sol),imin) y12q3sol = min(abs(y1q3sol - y2q3sol)) imin = np.argmin(abs(y1q3sol - y2q3sol)) # fsolq3=f(imin) fsolq3 = f[imin] # nsolq3=y1q3sol(imin) nsolq3 = y1q3sol[imin] # gsolq3=(1.-fsolq3 ^nsolq3) ^(1./nsolq3) gsolq3 = (1.0 - fsolq3**nsolq3) ** (1.0 / nsolq3) # endif else begin else: # if (maxdiffq3 gt 0.) then begin if maxdiffq3 > 0.0: # y1new=(f(94)+h3*(1.-f(94))) ^y2q3sol(94)+(1.-f(94) ^y2q3sol(94))*h3 ^y2q3sol(94)-1. y1new = (f[94] + h3 * (1.0 - f[94])) ** y2q3sol[94] + (1.0 - f[94] ** y2q3sol[94]) * h3 ** y2q3sol[94] - 1.0 # y2new=f(94) ^(y2q3sol(94)-1.)*(f(94)*(c3+b/a3)-b/a3)-c3 y2new = f[94] ** (y2q3sol[94] - 1.0) * (f[94] * (c3 + b / a3) - b / a3) - c3 # while (y1new gt y2new) do begin while y1new > y2new: # h3=h3-0.01 h3 = h3 - 0.01 # y1new=(f(94)+h3*(1.-f(94))) ^y2q3sol(94)+(1.-f(94) ^y2q3sol(94))*h3 ^y2q3sol(94)-1. y1new = (f[94] + h3 * (1.0 - f[94])) ** y2q3sol[94] + (1.0 - f[94] ** y2q3sol[94]) * h3 ** y2q3sol[94] - 1.0 # endwhile # fsolq3=f(94) fsolq3 = f[94] # nsolq3=y2q3sol(94) nsolq3 = y2q3sol[94] # gsolq3=(1.-fsolq3 ^nsolq3) ^(1./nsolq3) gsolq3 = (1.0 - fsolq3**nsolq3) ** (1.0 / nsolq3) # endif else begin else: # y1new=(f(4)+h3*(1.-f(4))) ^y2q3sol(4)+(1.-f(4) ^y2q3sol(4))*h3 ^y2q3sol(4)-1. y1new = (f[4] + h3 * (1.0 - f[4])) ** y2q3sol[4] + (1.0 - f[4] ** y2q3sol[4]) * h3 ** y2q3sol[4] - 1.0 # y2new=f(4) ^(y2q3sol(4)-1.)*(f(4)*(c3+b/a3)-b/a3)-c3 y2new = f[4] ** (y2q3sol[4] - 1.0) * (f[4] * (c3 + b / a3) - b / a3) - c3 # while (y1new lt y2new) do begin while y1new < y2new: # h3=h3+0.01 h3 = h3 + 0.01 # y1new=(f(4)+h3*(1.-f(4))) ^y2q3sol(4)+(1.-f(4) ^y2q3sol(4))*h3 ^y2q3sol(4)-1. y1new = (f[4] + h3 * (1.0 - f[4])) ** y2q3sol[4] + (1.0 - f[4] ** y2q3sol[4]) * h3 ** y2q3sol[4] - 1.0 # endwhile # fsolq3=f(4) fsolq3 = f[4] # nsolq3=y2q3sol(4) nsolq3 = y2q3sol[4] # gsolq3=(1.-fsolq3 ^nsolq3) ^(1./nsolq3) gsolq3 = (1.0 - fsolq3**nsolq3) ** (1.0 / nsolq3) # endelse # sqnew3=1.-(1.-h3)/cc sqnew3 = 1.0 - (1.0 - h3) / cc newsq[2] = sqnew3 # endelse # alpha3=a3/(1.-fsolq3) alpha3 = a3 / (1.0 - fsolq3) # beta3=b/gsolq3 beta3 = b / gsolq3 # y3=-1.*(beta3*(1.-(1.+(amin*(1./eps-1.)-r3)/alpha3) ^nsolq3) ^(1./nsolq3)) y3 = -1.0 * (beta3 * (1.0 - (1.0 + (amin * (1.0 / eps - 1.0) - r3) / alpha3) ** nsolq3) ** (1.0 / nsolq3)) # z3=y3+zoffset z3 = y3 + zoffset # r= [r1,r2,r3,r4] r = np.hstack((r1, r2, r3, r4)) # z= [z1,z2,z3,z4] z = np.hstack((z1, z2, z3, z4)) # zref= [z1ref,z2ref,z3ref,z4ref] zref = np.hstack((z1ref, z2ref, z3ref, z4ref)) if doPlot: pyplot.plot(r, z, '-') pyplot.gca().set_aspect('equal') return r, z, zref
[docs]class BoundaryShape(SortedDict): """ Class used to generate boundary shapes based on `T. C. Luce, PPCF, 55 9 (2013)` """ def __init__( self, a=None, eps=None, kapu=None, kapl=None, delu=None, dell=None, zetaou=None, zetaiu=None, zetail=None, zetaol=None, zoffset=None, upnull=None, lonull=None, rbbbs=None, zbbbs=None, rlim=None, zlim=None, gEQDSK=None, npts=90, ): """ :param a: minor radius :param eps: inverse aspect ratio (a/R) :param kapu: upper elongation :param kapl: lower elongation :param delu: upper triangularity :param dell: lower triangularity :param zetaou: upper outer squareness :param zetaiu: upper inner squareness :param zetail: lower inner squareness :param zetaol: lower outer squareness :param zoffset: z-offset :param upnull: toggle upper x-point :param lonull: toggle lower x-point :param rbbbs: R boundary points :param zbbbs: Z boundary points :param rlim: R limiter points :param zlim: Z limiter points :param npts: int number of points (per quadrant) :param doPlot: plot boundary shape :return: tuple with arrays of r,z,zref >> BoundaryShape(a=0.608,eps=0.374,kapu=1.920,kapl=1.719,delu=0.769,dell=0.463,zetaou=-0.155,zetaiu=-0.255,zetail=-0.174,zetaol=-0.227,zoffset=0.000,doPlot=True) """ if gEQDSK is not None: rbbbs = gEQDSK['RBBBS'] zbbbs = gEQDSK['ZBBBS'] rlim = gEQDSK['RLIM'] zlim = gEQDSK['ZLIM'] self['RBBBS'] = rbbbs self['ZBBBS'] = zbbbs self['RLIM'] = rlim self['ZLIM'] = zlim if rbbbs is None or zbbbs is None: if upnull is None: upnull = False if lonull is None: lonull = False self['upnull'] = upnull self['lonull'] = lonull if rbbbs is not None and zbbbs is not None: self.sameBoundaryShapeAs(rbbbs=rbbbs, zbbbs=zbbbs, upnull=upnull, lonull=lonull) else: self['a'] = a self['eps'] = eps self['kapu'] = kapu self['kapl'] = kapl self['delu'] = delu self['dell'] = dell self['zetaou'] = zetaou self['zetaiu'] = zetaiu self['zetail'] = zetail self['zetaol'] = zetaol self['zoffset'] = zoffset self._calc(npts) def _calc(self, npts=90): kw = {} argspec = inspect.getfullargspec(boundaryShape) for k in argspec.args: if k in self: kw[k] = self[k] newsq = np.zeros(4) r, z, zref = boundaryShape(npts=npts, newsq=newsq, **kw) for si, sq in enumerate(['zetaou', 'zetaiu', 'zetail', 'zetaol']): self[sq] = newsq[si] if 'r' not in self or len(r) != len(self['r']): self['r'] = r else: self['r'][:] = r if 'z' not in self or len(z) != len(self['z']): self['z'] = z else: self['z'][:] = z if 'zref' not in self or len(zref) != len(self['zref']): self['zref'] = zref else: self['zref'][:] = zref # bounds rsr2 = 1.0 / np.sqrt(2.0) self['bounds'] = SortedDict() self['bounds']['a'] = [self['a'] / 2.0, self['a'] * 2] self['bounds']['eps'] = [self['eps'] / 2.0, self['eps'] * 2] self['bounds']['kapu'] = [0.5, 2.5] self['bounds']['kapl'] = [0.5, 2.5] self['bounds']['delu'] = [-1 + 1e-9, 1 - 1e-9] self['bounds']['dell'] = [-1 + 1e-9, 1 - 1e-9] self['bounds']['zetaou'] = [-rsr2, rsr2] self['bounds']['zetaiu'] = [-rsr2, rsr2] self['bounds']['zetail'] = [-rsr2, rsr2] self['bounds']['zetaol'] = [-rsr2, rsr2] self['bounds']['zoffset'] = [-self['a'], self['a']] return r, z, zref
[docs] def plot(self, fig=None): from matplotlib import pyplot from matplotlib.widgets import CheckButtons, Button, TextBox, Slider orig = SortedDict() for k in self['bounds'].keys() + ['upnull', 'lonull']: orig[k] = self[k] if fig is None: fig = pyplot.gcf() ax = pyplot.subplot(1, 2, 1) line_rz, line_bbbs, line_lim = self._plot(ax) def update(varName=None): pv = {} if translator.get(varName, varName) in self: pv[translator.get(varName, varName)] = not self[translator.get(varName, varName)] else: for varName in self['bounds'].keys(): pv[varName] = ctrl[varName].val self.update(pv) try: self._calc() except IndexError: pass else: line_rz[0].set_data(self['r'], self['z']) fig.canvas.draw() if 'rootGUI' in OMFITaux and OMFITaux['rootGUI']: OMFITaux['rootGUI'].event_generate("<<update_treeGUI>>") translator = { 'eps': 'a/R', 'zoffset': 'z_{\\rm offset}', 'kapu': '\\kappa_{\\rm U}', 'kapl': '\\kappa_{\\rm L}', 'delu': '\\delta_{\\rm U}', 'dell': '\\delta_{\\rm L}', 'zetaou': '\\zeta_{\\rm OU}', 'zetaiu': '\\zeta_{\\rm IU}', 'zetaol': '\\zeta_{\\rm OL}', 'zetail': '\\zeta_{\\rm IL}', 'Upper X point': 'upnull', 'Lower X point': 'lonull', } ax_ctrl = {} ctrl = {} for k, varName in enumerate( reversed( ['a', 'eps', 'zoffset'] + ['kapu', 'delu', 'zetaou', 'zetaiu'] + ['kapl', 'dell', 'zetail', 'zetaol'] + ['upnull', 'lonull'] ) ): if varName not in ['upnull', 'lonull']: ax_ctrl[varName] = pyplot.axes( [0.6, 0.1 + k / float(len(self['bounds']) + 2) * 0.85, 0.3, 0.9 / float(4 + len(self['bounds'].keys()))] ) limits = self['bounds'][varName] ctrl[varName] = Slider( ax_ctrl[varName], '$%s$' % translator.get(varName, varName), limits[0], limits[1], valinit=self[varName] ) ctrl[varName].on_changed(update) check_ax = pyplot.axes([0.58, 0.02, 0.3, 3 / float(4 + len(self['bounds'].keys()))]) check_ax.set_frame_on(False) ctrl['null'] = CheckButtons(check_ax, ['Upper X point', 'Lower X point'], [self['upnull'], self['lonull']]) ctrl['null'].on_clicked(update) if 'RBBBS' in self and 'ZBBBS' in self and self['RBBBS'] is not None and self['ZBBBS'] is not None: bt_ax = pyplot.axes([0.75, 0.13, 0.15, 0.6 / float(4 + len(self['bounds'].keys()))]) ctrl['measure'] = Button(bt_ax, 'measure') def measure(dummy=None): print('measuring boundary...') self.sameBoundaryShapeAs() for varName in self['bounds'].keys(): ctrl[varName].val = self[varName] update() ctrl['measure'].on_clicked(measure) bt_ax = pyplot.axes([0.75, 0.07, 0.15, 0.6 / float(4 + len(self['bounds'].keys()))]) ctrl['fit'] = Button(bt_ax, 'fit') def fit(dummy=None): print('fitting boundary...') self.fitBoundaryShape() for varName in self['bounds'].keys(): ctrl[varName].val = self[varName] update() ctrl['fit'].on_clicked(fit) update() return ax
def _plot(self, ax=None): from matplotlib import pyplot if ax is None: ax = pyplot.gca() self._calc() line_bbbs = None if 'RBBBS' in self and 'ZBBBS' in self and self['RBBBS'] is not None and self['ZBBBS'] is not None: line_bbbs = ax.plot(self['RBBBS'], self['ZBBBS'], '--') line_lim = None if 'RLIM' in self and 'ZLIM' in self and self['RLIM'] is not None and self['ZLIM'] is not None: line_lim = ax.plot(self['RLIM'], self['ZLIM'], '-', color='k', linewidth=1.5) line_rz = ax.plot(self['r'], self['z'], '-') ax.set_aspect('equal') return line_rz, line_bbbs, line_lim
[docs] def sameBoundaryShapeAs(self, rbbbs=None, zbbbs=None, upnull=None, lonull=None, gEQDSK=None, verbose=None, npts=90): """ Measure boundary shape from input :param rbbbs: array of R points to match :param zbbbs: array of Z points to match :param upnull: upper x-point :param lonull: lower x-point :param gEQDSK: input gEQDSK to match (wins over rbbbs and zbbbs) :param verbose: print debug statements :param npts: int Number of points :return: dictionary with parameters to feed to the boundaryShape function [a, eps, kapu, kapl, delu, dell, zetaou, zetaiu, zetail, zetaol, zoffset, upnull, lonull] """ if gEQDSK is not None: rbbbs = gEQDSK['RBBBS'] zbbbs = gEQDSK['ZBBBS'] if rbbbs is None and 'RBBBS' in self: rbbbs = self['RBBBS'] if zbbbs is None and 'ZBBBS' in self: zbbbs = self['ZBBBS'] self['RBBBS'] = rbbbs self['ZBBBS'] = zbbbs # measure geo = fluxGeo(rbbbs, zbbbs, True) kapu = (max(zbbbs) - geo['Z']) / geo['a'] kapl = (geo['Z'] - min(zbbbs)) / geo['a'] p = np.array( [ geo['a'], # 0 a geo['a'] / geo['R'], # 1 eps geo['kapu'], # 2 ku geo['kapl'], # 3 kl geo['delu'], # 4 du geo['dell'], # 5 dl geo['zetaou'], # 6 dou geo['zetaiu'], # 7 diu geo['zetail'], # 8 dil geo['zetaol'], # 9 dol geo['zoffset'], ] ) # 10 z argspec = inspect.getfullargspec(boundaryShape) # update keys kw = OrderedDict() for k in range(len(p)): kw[argspec.args[k]] = p[k] if verbose: print(argspec.args[k].ljust(8) + ': % 3.3f <-- % 3.3f --> % 3.3f' % (b[k][0], p[k], b[k][1])) self.update(kw) self['upnull'] = geo['upnull'] self['lonull'] = geo['lonull'] self._calc(npts=npts) return kw
[docs] def fitBoundaryShape(self, rbbbs=None, zbbbs=None, upnull=None, lonull=None, gEQDSK=None, verbose=None, precision=1e-3, npts=90): """ Fit boundary shape from input :param rbbbs: array of R points to match :param zbbbs: array of Z points to match :param upnull: upper x-point :param lonull: lower x-point :param gEQDSK: input gEQDSK to match (wins over rbbbs and zbbbs) :param verbose: print debug statements :param doPlot: visualize match :param precision: optimization tolerance :param npts: int Number of points :return: dictionary with parameters to feed to the boundaryShape function [a, eps, kapu, kapl, delu, dell, zetaou, zetaiu, zetail, zetaol, zoffset, upnull, lonull] """ if gEQDSK is not None: rbbbs = gEQDSK['RBBBS'] zbbbs = gEQDSK['ZBBBS'] if rbbbs is None and 'RBBBS' in self: rbbbs = self['RBBBS'] if zbbbs is None and 'ZBBBS' in self: zbbbs = self['ZBBBS'] self['RBBBS'] = rbbbs self['ZBBBS'] = zbbbs if upnull is None and self['upnull'] is not None: upnull = self['upnull'] if lonull is None and self['lonull'] is not None: lonull = self['lonull'] self['upnull'] = upnull self['lonull'] = lonull rbbbs = rbbbs[:: int(len(rbbbs) // 200) + 1] zbbbs = zbbbs[:: int(len(zbbbs) // 200) + 1] rnrm = np.nanmax(rbbbs) - np.nanmin(rbbbs) znrm = np.nanmax(zbbbs) - np.nanmin(zbbbs) def _sameShape(p): r, z, zref = boundaryShape(*p, upnull=upnull, lonull=lonull, doPlot=False, npts=npts0) ax = 1 dR = ((r[np.newaxis, :] - rbbbs[:, np.newaxis]) / rnrm) ** 2 dZ = ((z[np.newaxis, :] - zbbbs[:, np.newaxis]) / znrm) ** 2 cost = nansum(np.min(np.sqrt(dR + dZ), ax)) ** 2 if verbose: print('%3.3e' % cost, map(lambda x: '%+3.3f' % x, p)) return cost # initial guess self.sameBoundaryShapeAs(rbbbs, zbbbs) p = [] for k in ['a', 'eps', 'kapu', 'kapl', 'delu', 'dell', 'zetaou', 'zetaiu', 'zetail', 'zetaol', 'zoffset']: p.append(self[k]) p = np.array(p) # fit npts0 = 100 tmp = scipy.optimize.minimize(_sameShape, p, method='Nelder-Mead', options={'xtol': precision, 'ftol': 1e-10}) p = tmp['x'] argspec = inspect.getfullargspec(boundaryShape) kw = OrderedDict() for k in range(len(p)): kw[argspec.args[k]] = p[k] if verbose: print(argspec.args[k].ljust(8) + ': % 3.3f <-- % 3.3f --> % 3.3f' % (b[k][0], p[k], b[k][1])) self.update(kw) self._calc(npts=npts) return kw
[docs]def rz_miller(a, R, kappa=1.0, delta=0.0, zeta=0.0, zmag=0.0, poloidal_resolution=101): """ return R,Z coordinates for all flux surfaces from miller geometry coefficients in input.profiles file based on gacode/gapy/src/gapy_geo.f90 :param a: minor radius :param R: major radius :param kappa: elongation :param delta: triandularity :param zeta: squareness :param zmag: z offset :param poloidal_resolution: integer with number of equispaced points in toroidal angle, or array of toroidal angles :return: 1D arrays with (R, Z) flux surface coordinates """ if isinstance(poloidal_resolution, int): t0 = np.linspace(0, 2 * np.pi, poloidal_resolution) else: t0 = poloidal_resolution # R tmp = t0 + np.arcsin(delta) * np.sin(t0) r0 = R + a * np.cos(tmp) # Z tmp = t0 + zeta * np.sin(2 * t0) z0 = zmag + kappa * a * np.sin(tmp) return r0, z0
[docs]def miller_derived(rmin, rmaj, kappa, delta, zeta, zmag, q): ''' Originally adapted by A. Tema from FORTRAN of gacode/shared/GEO/GEO_do.f90 :param rmin: minor radius :param rmaj: major radius :param kappa: elongation :param delta: triangularity :param zeta: squareness :param zmag: z magnetic axis :param q: safety factor :return: dictionary with volume, grad_r0, bp0, bt0 ''' # ------------------------------------------------------------------------- # CALCULATION OF GEOMETRY COEFFCIENTS FOR LOCAL EQUILIBRIUM MODEL. # here the Generalize Miller-type parametrization is implemented. # --------------------------------------------------------------------------- # This part should be turned in a function, and consitute the basis of the EXPRO mapping. GEO_ntheta_in = 1001 # number of theta interpolation nodes use less if slow. use odd number.! n_theta = GEO_ntheta_in pi_2 = 8.0 * np.arctan(1.0) i = range(0, n_theta - 1) d_theta = pi_2 / (n_theta - 1) # ------------------------------------------------------------------ # Compute fundamental geometric quantities (basic derivatives like dl/dt) and metric elements (g_tt). thetav = [-0.5 * pi_2 + (i - 1) * d_theta for i in range(n_theta - 1)] theta0 = thetav[-1] # ----------------------------------------------------------------- # Generalized Miller-type parameterization # ----------------------------------------------------------------- # nexp is the grid size nexp = len(rmin) GEO_delta_in = delta GEO_rmin_in = rmin.copy() GEO_rmaj_in = rmaj GEO_drmaj_in = deriv(GEO_rmin_in, GEO_rmaj_in) # dR_0/dr GEO_s_delta_in = GEO_rmin_in * deriv(GEO_rmin_in, GEO_delta_in) # r*d(delta)/dr GEO_zeta_in = zeta GEO_zmag_in = zmag # geo_zoffset GEO_kappa_in = kappa # geo_kap GEO_dzmag_in = deriv(GEO_rmin_in, zmag) # dz_0/dr GEO_s_kappa_in = (GEO_rmin_in / GEO_kappa_in) * deriv(GEO_rmin_in, GEO_kappa_in) # (r/kappa) d(kappa)/dr GEO_s_zeta_in = GEO_rmin_in * deriv(GEO_rmin_in, GEO_zeta_in) # r d(zeta)/dr GEO_q_in = q GEO_grad_r0 = [] GEO_volume = [] GEO_bp0 = [] GEO_bt0 = [] for kk in range(nexp): # ! A # ! dA/dtheta # ! d^2A/dtheta^2 x = np.arcsin(GEO_delta_in[kk]) a = [theta + x * np.sin(theta) for theta in thetav] a_t = [1.0 + x * np.cos(theta) for theta in thetav] a_tt = [-x * np.sin(theta) for theta in thetav] a_t2 = [element**2 for element in a_t] # ! R(theta) # ! dR/dr # ! dR/dtheta # ! d^2R/dtheta^2 bigr = GEO_rmaj_in[kk] + GEO_rmin_in[kk] * np.cos(a) bigr_r = GEO_drmaj_in[kk] + np.cos(a) - GEO_s_delta_in[kk] / np.cos(x) * np.sin(theta0) * np.sin(a) bigr_t = -GEO_rmin_in[kk] * np.array(a_t * np.sin(a)) # bigr_t2=[element**2 for element in bigr_t] bigr_tt = -GEO_rmin_in[kk] * np.array(a_t2 * np.cos(a)) - GEO_rmin_in[kk] * np.array(a_tt * np.sin(a)) # ----------------------------------------------------------- # ! A # ! dA/dtheta # ! d^2A/dtheta^2 a = [theta + GEO_zeta_in[kk] * np.sin(2 * theta) for theta in thetav] a_t = [1.0 + 2 * GEO_zeta_in[kk] * np.cos(2 * theta) for theta in thetav] a_tt = [-4 * GEO_zeta_in[kk] * np.sin(2 * theta) for theta in thetav] a_t2 = [element**2 for element in a_t] # ! Z(theta) # ! dZ/dr # ! dZ/dtheta # ! d^2Z/dtheta^2 bigz = GEO_zmag_in[kk] + GEO_kappa_in[kk] * GEO_rmin_in[kk] * np.sin(a) bigz_r = ( GEO_dzmag_in[kk] + GEO_kappa_in[kk] * (1.0 + GEO_s_kappa_in[kk]) * np.sin(a) + GEO_kappa_in[kk] * GEO_s_zeta_in[kk] * np.cos(a) * np.sin(2 * theta0) ) bigz_t = GEO_kappa_in[kk] * GEO_rmin_in[kk] * np.cos(a) * a_t # bigz_t2=[element**2 for element in bigz_t] bigz_tt = -GEO_kappa_in[kk] * GEO_rmin_in[kk] * np.sin(a) * a_t2 + GEO_kappa_in[kk] * GEO_rmin_in[kk] * np.cos(a) * a_tt # g_tt = bigr_t**2 + bigz_t**2 jac_r = bigr * (bigr_r * bigz_t - bigr_t * bigz_r) if rmin[kk] == 0: grad_r = bigr * 0 + 1 else: grad_r = bigr * np.sqrt(g_tt) / jac_r l_t = np.sqrt(g_tt) # 1/(du/dl) # r_c=l_t**3/(bigr_t*bigz_tt-bigz_t*bigr_tt) # ! cos(u) # bigz_l= bigz_t/l_t # nsin=(bigr_r*bigr_t+bigz_r*bigz_t)/l_t # --------------------------------------------- # Loop integral (1 to n_theta-1) to compute f # This Step above is the only justification why we carried all the poloidal points. # Since we just need bp0,bt0,grad_r0 at theta =0, we needed the others angles for the INTEGRAL HERE.! ccc = np.sum(l_t[:-1] / (bigr[:-1] * grad_r[:-1])) if rmin[kk] == 0: f = 0 else: f = GEO_rmin_in[kk] / (ccc * d_theta / pi_2) # --------------------------------------------- # ! bt (toroidal field, Bt) # ! bp (poloidal field, Bp) # ! b (total field, B) bt = f / bigr bp = (GEO_rmin_in[kk] / GEO_q_in[kk]) * grad_r / bigr # b(i) = GEO_signb_in*np.sqrt(bt(i)**2+bp(i)**2) GEO_grad_r0.append(grad_r[int(n_theta // 2) + 1]) # ! # ! pre-factor of 0.5 comes from triangular element in phi-direction: # ! dV = (0.5*R*dphi)*(R*dZ) # ! GEO_volume.append(0.5 * pi_2 * np.sum(bigz_t * bigr**2) * d_theta) if rmin[kk] == 0: GEO_bp0.append(0.0) else: GEO_bp0.append(bp[int(n_theta // 2) + 1]) GEO_bt0.append(bt[int(n_theta // 2) + 1]) GEO_bt0[0] = interp1e(rmin[1:], GEO_bt0[1:])(0) # -------------------------------------------------------------------------------------------------------- # END OF Generalized Miller-type parameterization: Rememeber to transform it into a function so that # it will be the staring point of the EXPRO mapping. # -------------------------------------------------------------------------------------------------------- quantities = {} for item in ['GEO_volume', 'GEO_grad_r0', 'GEO_bt0', 'GEO_bp0']: quantities[re.sub('^GEO_', '', item)] = np.array(eval(item)) return quantities
# OMAS extra_structures _extra_structures = { 'equilibrium': { 'equilibrium.time_slice[:].profiles_1d.centroid': { "data_type": "structure", "documentation": "geometric information of the flux surfaces centroid", "full_path": "equilibrium/time_slice(itime)/profiles_1d/centroid", }, 'equilibrium.time_slice[:].profiles_1d.centroid.r_max': { "full_path": "equilibrium/time_slice(itime)/profiles_1d/centroid.r_max(:)", "coordinates": ['equilibrium.time_slice[:].profiles_1d.psi'], "data_type": "FLT_1D", "description": "centroid r max", "units": 'm', }, 'equilibrium.time_slice[:].profiles_1d.centroid.r_min': { "full_path": "equilibrium/time_slice(itime)/profiles_1d/centroid.r_min(:)", "coordinates": ['equilibrium.time_slice[:].profiles_1d.psi'], "data_type": "FLT_1D", "description": "centroid r min", "units": 'm', }, 'equilibrium.time_slice[:].profiles_1d.centroid.r': { "full_path": "equilibrium/time_slice(itime)/profiles_1d/centroid.r(:)", "coordinates": ['equilibrium.time_slice[:].profiles_1d.psi'], "data_type": "FLT_1D", "description": "centroid r", "units": 'm', }, 'equilibrium.time_slice[:].profiles_1d.centroid.z': { "full_path": "equilibrium/time_slice(itime)/profiles_1d/centroid.z(:)", "coordinates": ['equilibrium.time_slice[:].profiles_1d.psi'], "data_type": "FLT_1D", "description": "centroid z", "units": 'm', }, } } omas.omas_utils._structures = {} omas.omas_utils._structures_dict = {} if not hasattr(omas.omas_utils, '_extra_structures'): omas.omas_utils._extra_structures = {} for _ids in _extra_structures: for _item in _extra_structures[_ids]: _extra_structures[_ids][_item]['lifecycle_status'] = 'omfit' omas.omas_utils._extra_structures.setdefault(_ids, {}).update(_extra_structures[_ids]) ############################################ if '__main__' == __name__: test_classes_main_header() from matplotlib import pyplot from omfit_classes.omfit_eqdsk import OMFITgeqdsk OMFIT['test'] = OMFITgeqdsk(OMFITsrc + '/../samples/g146102.00465') OMFIT['test']['fluxSurfaces'].load() OMFIT['test']['fluxSurfaces'].plot() pyplot.show()