Source code for omfit_classes.omfit_tglf

try:
    # framework is running
    from .startup_choice import *
except ImportError as _excp:
    # class is imported by itself
    if (
        'attempted relative import with no known parent package' in str(_excp)
        or 'No module named \'omfit_classes\'' in str(_excp)
        or "No module named '__main__.startup_choice'" in str(_excp)
    ):
        from startup_choice import *
    else:
        raise

import numpy as np
from omfit_classes.omfit_path import OMFITpath
from omfit_classes.omfit_ascii import OMFITascii
from omfit_classes.sortedDict import OMFITdataset
from omfit_classes.omfit_dir import OMFITdir
from omfit_classes.omfit_gacode import OMFITgacode
from omfit_classes.omfit_asciitable import OMFITasciitable

__all__ = [
    'OMFITtglfEPinput',
    'OMFITalphaInput',
    'OMFITtglf_eig_spectrum',
    'OMFITtglf_wavefunction',
    'OMFITtglf_flux_spectrum',
    'OMFITtglf_nete_crossphase_spectrum',
    'OMFITtglf_potential_spectrum',
    'OMFITtglf_fluct_spectrum',
    'OMFITtglf_intensity_spectrum',
    'OMFITtglf',
    'OMFITtglf_nsts_crossphase_spectrum',
    'sum_ky_spectrum',
]


[docs]class OMFITtglfEPinput(OMFITascii, SortedDict): ''' Class used to read/write TGLFEP input files ''' def __init__(self, filename, **kw): OMFITascii.__init__(self, filename, **kw) SortedDict(self) self.dynaLoad = True
[docs] @dynaLoad def load(self): with open(self.filename, 'r') as f: lines = f.read() widths = [] for line in lines.split('\n'): if not len(line.strip()): continue try: if len(widths): self['WIDTHS'] = widths value, key = line.split() except ValueError: # not enough values to unpack widths.append(eval(line)) else: if value == '.false.': value = False elif value == '.true.': value = True else: value = eval(value) self[key] = value
[docs] @dynaSave def save(self): txt = [] for key, value in self.items(): if key == 'WIDTHS': continue if value is False: value = '.false.' elif value is True: value = '.true.' txt.append(f'{value} {key}') if key == 'WIDTH_IN_FLAG' and 'WIDTHS' in self: txt.append('\n'.join(map(str, self['WIDTHS']))) with open(self.filename, 'w') as f: f.write('\n'.join(txt))
[docs]class OMFITalphaInput(OMFITascii, SortedDict): def __init__(self, filename, **kw): OMFITascii.__init__(self, filename, **kw) SortedDict(self) self.dynaLoad = True
[docs] @dynaLoad def load(self): with open(self.filename, 'r') as f: lines = f.read().strip().split('\n') comment = lines[0] data = np.array(list(map(eval, lines[1:]))) self['comment'] = comment self['data'] = data
def get_ky_spectrum(filename): with open(filename, 'r') as f: content = f.readlines() content = ''.join(content[2:]).split() ky = np.array(content, dtype=float) return ky class OMFITtglf_QL_flux_spectrum(OMFITdataset, OMFITascii): ''' Parse the out.tglf.QL_flux_spectrum file :param filename: Path to the out.tglf.QL_flux_spectrum file ''' def __init__(self, filename, ky_file, field_labels, spec_labels, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.field_labels = self.OMFITproperties['field_labels'] = field_labels self.spec_labels = self.OMFITproperties['spec_labels'] = spec_labels self.n_species = len(spec_labels) self.n_fields = len(field_labels) @dynaLoad def load(self): with open(self.filename, 'r') as f: lines = f.readlines() ntype, nspecies, nfield, nky, nmodes = list(map(int, lines[3].strip().split())) with open(self.filename) as f: content = f.read() tmpdict = SortedDict() ky = get_ky_spectrum(self.ky_file) ql = [] for line in lines[6:]: line = line.strip().split() if any([x.startswith(("s", "m")) for x in line]): continue for x in line: ql.append(float(x)) QLw = array(ql).reshape(nspecies, nfield, nmodes, nky, ntype) types = ['particle', 'energy', 'toroidal stress', 'parallel stress', 'exchange'] self.labels = types # used in plot. for i, t in enumerate(types): QL_data_array = DataArray( data=QLw[:, :, :, :, i], dims=["species", 'field', 'mode_num', 'ky'], coords={ "species": self.spec_labels, "field": self.field_labels, "mode_num": np.arange(nmodes) + 1, "ky": ky, }, ) self.update({t: QL_data_array}) def plot(self, fn=None): ''' Plot the QL (flux) weights spectra :param fn: A FigureNotebook instance ''' ns = self.n_species species = self.spec_labels nf = self.n_fields fields = self.field_labels if fn is None: from omfit_plot import FigureNotebook tabbed = FigureNotebook(nfig=0, name='TGLF QL (flux) weight spectra') else: tabbed = fn for k in self.labels: fig = tabbed.add_figure(label=k) fig.suptitle(k) for s in range(ns): for f in range(nf): if s == 0 and f == 0: ax0 = ax = axr = fig.use_subplot(ns, nf, s * nf + f + 1) elif f == 0: ax = axr = fig.use_subplot(ns, nf, s * nf + f + 1, sharex=ax0) else: ax = fig.use_subplot(ns, nf, s * nf + f + 1, sharex=ax0, sharey=axr) if f == 0: ax.set_ylabel('Species: %s' % (self.spec_labels[s])) if s == 0: ax.set_title([r'$\phi$', r'$B_{\perp}$', r'$B_{\parallel}$'][f]) # The actual data, ax.plot(self['ky'], self[k].sel(species=species[s], field=fields[f], mode_num=1).data) ax.set_xscale('log') ax.axis('tight') autofmt_sharexy(fig=fig) fig.canvas.draw() class OMFITtglf_QL_intensity_spectrum(OMFITdataset, OMFITascii): ''' Parse the out.tglf.QL_intensity_spectrum file :param filename: Path to the out.tglf.QL_flux_spectrum file ''' def __init__(self, filename, ky_file, n_species, spec_labels, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.n_species = self.OMFITproperties['n_species'] = n_species self.spec_labels = self.OMFITproperties['spec_labels'] = spec_labels @dynaLoad def load(self): with open(self.filename, 'r') as f: lines = f.readlines() ntype, nspecies, nky, nmodes = list(map(int, lines[4].strip().split())) with open(self.filename) as f: content = f.read() tmpdict = SortedDict() ky = get_ky_spectrum(self.ky_file) ql = [] for line in lines[7:]: line = line.strip().split() if any([x.startswith(("s", "m")) for x in line]): continue for x in line: ql.append(float(x)) QLw = array(ql).reshape(nspecies, nmodes, nky, ntype) types = ['density', 'temperature', 'U', 'Q'] for i, t in enumerate(types): QL_data_array = DataArray( data=QLw[:, :, :, i], dims=["species", 'mode_num', 'ky'], coords={ "species": self.spec_labels, "mode_num": np.arange(nmodes) + 1, "ky": ky, }, ) self.update({t: QL_data_array})
[docs]class OMFITtglf_eig_spectrum(OMFITdataset, OMFITascii): def __init__(self, filename, ky_file, nmodes, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.nmodes = self.OMFITproperties['nmodes'] = nmodes
[docs] @dynaLoad def load(self): nmodes = self.nmodes with open(self.filename, 'r') as f: content = f.readlines() content = ''.join(content[2:]).split() ky = get_ky_spectrum(self.ky_file) gamma = [] freq = [] for k in range(self.nmodes): gamma.append(np.array(content[2 * k :: nmodes * 2], dtype=float)) freq.append(np.array(content[2 * k + 1 :: nmodes * 2], dtype=float)) gamma = np.array(gamma) freq = np.array(freq) gamma = DataArray(gamma, dims=('mode_num', 'ky'), coords={'ky': ky, 'mode_num': np.arange(nmodes) + 1}) freq = DataArray(freq, dims=('mode_num', 'ky'), coords={'ky': ky, 'mode_num': np.arange(nmodes) + 1}) self.update({'gamma': gamma, 'freq': freq})
[docs] def plot(self, axs=None): ''' Plot the eigenvalue spectrum as growth rate and frequency :param axs: A length 2 sequence of matplotlib axes (growth rate, frequency) ''' if axs is None: fig, axs = pyplot.subplots(2, 1, num=pyplot.gcf().number, squeeze=True, sharex=True) else: fig = axs[0].get_figure() for k in range(self.nmodes): axs[0].plot(self['ky'], self['gamma(%d)' % (k + 1)], label='Growth rate $\\gamma_{%d}$' % (k + 1)) axs[1].plot(self['ky'], self['freq(%d)' % (k + 1)], label='Frequency $\\omega_{%d}$' % (k + 1)) axs[0].set_ylabel('Growth rate $\\gamma$') with warnings.catch_warnings(): # We don't care if matplotlib has an underflow while drawing warnings.filterwarnings('ignore', category=RuntimeWarning, message='underflow*') axs[0].set_yscale('symlog', linthresh=0.01) axs[1].set_yscale('symlog', linthresh=0.01) axs[1].set_ylabel('Frequency $\\omega$') axs[1].axhline(0, color='gray', ls='--') axs[1].set_xlabel('$k_\\perp \\rho$') axs[0].set_xscale('log') fig.canvas.draw()
@dynaLoad def __getitem__(self, key): if key in self: return OMFITdataset.__getitem__(self, key) if key.startswith('gamma') and '(' in key: ind = int(key.split('(')[1].split(')')[0]) return self['gamma'].sel(mode_num=ind).values if key.startswith('freq') and '(' in key: ind = int(key.split('(')[1].split(')')[0]) return self['freq'].sel(mode_num=ind).values raise KeyError(key)
[docs]class OMFITtglf_wavefunction(OMFITascii, SortedDict): def __init__(self, filename, **kw): OMFITascii.__init__(self, filename, **kw) SortedDict.__init__(self) self.dynaLoad = True
[docs] @dynaLoad def load(self): with open(self.filename, 'r') as f: lines = f.readlines() nmodes, nfields, npoints = list(map(int, lines[0].split())) self.nmodes = nmodes self.nfields = nfields keys = lines[1].split() self.headers = keys[1:] content = ''.join(lines[2:]).split() self['theta'] = np.array(content[0 :: nmodes * nfields * 2 + 1], dtype=float) for ik, k in enumerate(keys[1:]): for n in range(nmodes): self['%s(%d)' % (k, n + 1)] = np.array(content[2 * n * nfields + 1 + ik :: nmodes * nfields * 2 + 1], dtype=float)
[docs] def plot(self): def pi_mult_formatter(x, pos): if x == 0: return '0' if x == np.pi: return r'$\pi$' if x == -np.pi: return r'$-\pi$' return r'$%d\pi$' % (int(round(x / np.pi, 0))) fig, axs = pyplot.subplots(self.nfields, self.nmodes, num=pyplot.gcf().number, sharex=True, sharey='row', squeeze=False) for n in range(self.nmodes): for ki, k in enumerate(self.headers): axs[int(ki // 2)][n].plot(self['theta'], self['%s(%d)' % (k, n + 1)], ls=['-', '--'][ki % 2]) if n == 0: axs[int(ki // 2)][n].set_ylabel(k.split('(')[1].split(')')[0]) if ki == len(self.headers) - 1: axs[int(ki // 2)][n].set_xlabel(r'$\theta$') axs[int(ki // 2)][n].xaxis.set_major_locator(MultipleLocator(np.pi)) axs[int(ki // 2)][n].xaxis.set_major_formatter(FuncFormatter(pi_mult_formatter)) fig.canvas.draw()
[docs]class OMFITtglf_flux_spectrum(OMFITdataset, OMFITascii): ''' Parse the out.tglf.sum_flux_spectrum file and provide a convenient means for plotting it. :param filename: Path to the out.tglf.sum_flux_spectrum file :param n_species: Number of species :param n_fields: Number of fields ''' def __init__(self, filename, ky_file, field_labels, spec_labels, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.spec_labels = self.OMFITproperties['spec_labels'] = spec_labels self.field_labels = self.OMFITproperties['field_labels'] = field_labels self.n_species = len(self.spec_labels) self.n_fields = len(self.field_labels)
[docs] @dynaLoad def load(self): ns = self.n_species nf = self.n_fields with open(self.filename) as f: content = f.read() tmpdict = SortedDict() ky = get_ky_spectrum(self.ky_file) tmpdict['ky'] = np.array(ky, dtype=float) for s in range(ns): for f in range(nf): ind1 = content.find('species =') ind2 = content.find('species =', ind1 + 10) data = content[ind1:ind2] first_two = data.splitlines()[:2] spec = int(first_two[0].split()[2]) field = int(first_two[0].split()[5]) spec_label = self.spec_labels[s] labels = [k.strip().replace('flux', '').strip() for k in first_two[1].split(',')] keys = [k + '_field_%d_spec_%s' % (field, spec_label) for k in labels] labels = labels[:] data = ''.join(data.splitlines()[2:]).split() for ki, k in enumerate(keys): tmpdict[k] = np.array(data[ki :: len(keys)], dtype=float) content = content[content.find('species =', 10) :] ky = tmpdict['ky'] tmparray = {} for label in labels: tmparray['_'.join(label.split())] = DataArray( np.zeros((ns, nf, len(ky))), dims=('species', 'field', 'ky'), coords={'species': self.spec_labels, 'field': self.field_labels, 'ky': ky}, ) for k, v in list(tmpdict.items()): if k == 'ky': continue quant, field = k.split('_field_', 2) quant = '_'.join(quant.split()) field, spec_label = field.split('_spec_') spec_ind = self.spec_labels.index(spec_label) field_ind = int(field) - 1 tmparray[quant][spec_ind, field_ind, :] = v self.update(tmparray) self._initialized = False self.labels = labels self._initialized = True
[docs] @dynaLoad def plot(self, fn=None): ''' Plot the flux spectra :param fn: A FigureNotebook instance ''' ns = self.n_species nf = self.n_fields if fn is None: from omfit_plot import FigureNotebook tabbed = FigureNotebook(nfig=0, name='TGLF Flux Spectra') else: tabbed = fn for k in self.labels: fig = tabbed.add_figure(label=k) fig.suptitle(k) for s in range(ns): for f in range(nf): if s == 0 and f == 0: ax0 = ax = axr = fig.use_subplot(ns, nf, s * nf + f + 1) elif f == 0: ax = axr = fig.use_subplot(ns, nf, s * nf + f + 1, sharex=ax0) else: ax = fig.use_subplot(ns, nf, s * nf + f + 1, sharex=ax0, sharey=axr) if f == 0: ax.set_ylabel('Species: %s' % (self.spec_labels[s])) if s == 0: ax.set_title([r'$\phi$', r'$B_{\perp}$', r'$B_{\parallel}$'][f]) ax.plot(self['ky'], self[k + '_field_%d_spec_%s' % (f + 1, self.spec_labels[s])]) ax.set_xscale('log') ax.axis('tight') autofmt_sharexy(fig=fig) fig.canvas.draw()
@dynaLoad def __getitem__(self, key): if key in self: return OMFITdataset.__getitem__(self, key) try: quant, field = key.split('_field_', 2) quant = '_'.join(quant.split()) field, spec_label = field.split('_spec_') spec_ind = self.spec_labels.index(spec_label) field_ind = int(field) - 1 return self[quant].isel(field=field_ind, species=spec_ind) except Exception as _excp: print(_excp) raise KeyError(k)
[docs]class OMFITtglf_nete_crossphase_spectrum(OMFITdataset, OMFITascii): ''' Parse the out.tglf.nete_crossphase_spectrum file and provide a convenient means for plotting it. :param filename: Path to the out.tglf.nete_crossphase_spectrum file :param nmodes: Number of modes computed by TGLF and used in the ''' def __init__(self, filename, ky_file, nmodes, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.nmodes = self.OMFITproperties['nmodes'] = nmodes self.ky_file = self.OMFITproperties['ky_file'] = ky_file
[docs] @dynaLoad def load(self): nmodes = self.nmodes with open(self.filename, 'r') as f: content = f.readlines() content = ''.join(content[2:]).split() ky = get_ky_spectrum(self.ky_file) tmparray = [] for k in range(self.nmodes): tmparray.append(np.array(content[k::nmodes], dtype=float)) self.update({'nete': DataArray(np.array(tmparray), dims=('mode_num', 'ky'), coords={'mode_num': np.arange(nmodes) + 1, 'ky': ky})})
[docs] def plot(self, ax=None): ''' Plot the nete crossphase spectrum :param ax: A matplotlib axes instance ''' if ax is None: fig, ax = pyplot.subplots(1, 1, squeeze=True) ky = self['ky'] nmodes = self.nmodes for k in range(nmodes): ax.plot(ky, self['nete_crossphase_spectrum(%d)' % (k + 1)] / np.pi, label='Mode %d' % (k + 1)) ax.legend(loc='best') ax.set_xscale('log') ax.set_xlabel(r'$k_y$') ax.set_ylabel(r'$\delta n_e$ $\delta T_e$ crossphase') ax.set_title(r'$\Theta_{\delta n_e\delta T_e}$') ax.axis('tight') ax.set_yticks(np.linspace(-np.pi / 2.0, np.pi / 2.0, 5), [r'$-\pi/2$', r'$\pi/4$', '0', r'$\pi/4$', r'$\pi/2$']) fmt = pyplot.ScalarFormatter() fmt.set_scientific(False) ax.xaxis.set_major_formatter(fmt)
@dynaLoad def __getitem__(self, key): if key in self: return OMFITdataset.__getitem__(self, key) if 'nete_crossphase_spectrum(' in key: ind = int(key.split('(')[1].split(')')[0]) return self['nete'].sel(mode_num=ind) raise KeyError(key)
[docs]class OMFITtglf_nsts_crossphase_spectrum(OMFITdataset, OMFITascii): ''' Parse the out.tglf.nsts_crossphase_spectrum file and provide a convenient means for plotting it. :param filename: Path to the out.tglf.nsts_crossphase_spectrum file :param nmodes: Number of modes computed by TGLF and used in the ''' def __init__(self, filename, ky_file, nmodes, spec_labels, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.spec_labels = self.OMFITproperties['spec_labels'] = spec_labels self.nmodes = self.OMFITproperties['nmodes'] = nmodes
[docs] @dynaLoad def load(self): with open(self.filename, 'r') as f: content = f.readlines() # Remove the main header header = content.pop(0) nspec = int(header.strip().split()[-2]) nmodes = self.nmodes for ci, c in enumerate(content): if ci == 0: continue if c.strip().startswith('species'): nk = ci - 2 # Two header lines break nsts = np.zeros((nspec, nmodes, nk), dtype=float) for si in range(nspec): block = ' '.join(content[(2 + nk) * si + 2 : (2 + nk) * (si + 1)]).split() if si == 0: ky = get_ky_spectrum(self.ky_file) for mi in range(nmodes): nsts[si, mi, :] = np.array(block[mi::nmodes], dtype=float) self.update( { 'nsts': DataArray( np.array(nsts), dims=('species', 'mode_num', 'ky'), coords={'species': self.spec_labels, 'mode_num': np.arange(nmodes) + 1, 'ky': ky}, ) } )
[docs] def plot(self, axs=None): ''' Plot the nsts crossphase spectrum :param axs: A sequence of matplotlib axes instances of length len(self['species']) ''' ky = self['ky'] nmodes = self.nmodes nspec = len(self['species']) if axs is None or len(np.atleast1d(axs)) != nspec: fig, axs = pyplot.subplots(nspec, 1, squeeze=True, sharex=True) fmt = pyplot.ScalarFormatter() fmt.set_scientific(False) for si, spec in enumerate(self['species']): ax = axs[si] ax.set_ylabel(f'Species: {spec.data}') ax.xaxis.set_major_formatter(fmt) ax.set_yticks(np.linspace(-1, 1, 5)) ax.set_yticklabels([r'$-\pi/2$', r'$\pi/4$', '0', r'$\pi/4$', r'$\pi/2$']) for mi in range(nmodes): ax.plot(ky, self['nsts'].isel(species=si, mode_num=mi) / np.pi, label='Mode %d' % (mi + 1)) ax.set_ylim([-1.1, 1.1]) ax.legend(loc='best') ax.set_xscale('log') ax.set_xlabel(r'$k_y$') axs[0].set_title(r'$\Theta_{\delta n_s\delta T_s}$') ax.axis('tight')
[docs]class OMFITtglf_potential_spectrum(OMFITdataset, OMFITascii): ''' Parse the potential fluctuation spectrum in out.tglf.potential_spectrum and provide a convenient means for plotting it. :param filename: Path to the out.tglf.potential_spectrum file ''' def __init__(self, filename, ky_file, nmodes, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.nmodes = self.OMFITproperties['nmodes'] = nmodes
[docs] @dynaLoad def load(self): with open(self.filename, 'r') as f: lines = f.readlines() nmodes = self.nmodes ky = get_ky_spectrum(self.ky_file) description = lines[0] columns = [x.strip() for x in lines[1].split(',')] nc = len(columns) content = ''.join(lines[6:]).split() tmpdict = {} tmpdict['ky'] = np.array(ky, dtype=float) for ik, k in enumerate(columns): tmp = [] for nm in range(nmodes): tmp.append(np.array(content[ik + nm * nc :: nmodes * nc], dtype=float)) tmpdict[k] = tmp for k, v in list(tmpdict.items()): if k == 'ky': continue self[k] = xarray.DataArray(v, dims=('mode_num', 'ky'), coords={'ky': tmpdict['ky'], 'mode_num': np.arange(nmodes) + 1})
[docs] @dynaLoad def plot(self, fn=None): ''' Plot the fields :param fn: A FigureNotebook instance ''' from omfit_plot import FigureNotebook if fn is None: fn = FigureNotebook('Field spectra') nmodes = self.nmodes fmt = pyplot.ScalarFormatter() fmt.set_scientific(False) for k in self.data_vars: for nm in range(nmodes): if not np.any(self[k] != 0): continue fig, ax = fn.subplots(label=k + ', mode = ' + str(nm + 1), squeeze=True) ax.plot(self['ky'], self[k][nm]) ax.set_xscale('log') ax.axis('tight') ax.xaxis.set_major_formatter(fmt) ax.set_xlabel('$k_y$')
[docs]class OMFITtglf_fluct_spectrum(OMFITdataset, OMFITascii): ''' Parse the {density,temperature} fluctuation spectrum in out.tglf.{density,temperature}_spectrum and provide a convenient means for plotting it. :param filename: Path to the out.tglf.{density,temperature}_spectrum file :param ns: Number of species :param label: Type of fluctuations ('density' or 'temperature') ''' pretty_names = {'density': r'\delta n ', 'temperature': r'\delta T '} def __init__(self, filename, ky_file, ns, label, spec_labels, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.ns = self.OMFITproperties['ns'] = ns self.label = self.OMFITproperties['label'] = label self.spec_labels = self.OMFITproperties['spec_labels'] = spec_labels
[docs] @dynaLoad def load(self): ns = self.ns with open(self.filename, 'r') as f: content = f.readlines() content = ''.join(content[2:]).split() ky = get_ky_spectrum(self.ky_file) tmplist = [] for s in range(ns): tmplist.append(np.array(content[s::ns], dtype=float)) self[self.label] = xarray.DataArray(np.array(tmplist), dims=('species', 'ky'), coords={'species': self.spec_labels, 'ky': ky})
[docs] @dynaLoad def plot(self, axs=None): ''' Plot the fluctuation spectrum :param axs: A list of matplotlib axes of length self.ns ''' from matplotlib import pyplot from matplotlib.ticker import ScalarFormatter if axs is None: fig, axs = pyplot.subplots(self.ns, 1, sharex=True, sharey=True) else: if len(axs) != self.ns: raise ValueError('Must pass length %s list of axes' % self.ns) fig = axs[0].get_figure() ns = self.ns lab_base = self.pretty_names[self.label] for s in range(ns): ax = axs[s] ax.plot(self['ky'], self[self.label + '_spec_%d' % (s + 1)], label=r'$%s_{%s}$' % (lab_base, self.spec_labels[s])) ax.legend() ax.set_xscale('log') ax.axis('tight') fmt = pyplot.ScalarFormatter() fmt.set_scientific(False) ax.xaxis.set_major_formatter(fmt) ax.set_xlabel(r'$k_y$') try: autofmt_sharexy(fig=fig) except NameError: pass
def __getitem__(self, key): if key in self: return OMFITdataset.__getitem__(self, key) if key.startswith(self.label + '_spec_'): spec_ind = int(key.split('_')[-1]) - 1 return self[self.label].isel(species=spec_ind) raise KeyError(key)
[docs]class OMFITtglf_intensity_spectrum(OMFITdataset, OMFITascii): ''' Parse the intensity fluctuation spectrum in out.tglf.{density,temperature}_spectrum and provide a convenient means for plotting it. :param filename: Path to the out.tglf.{density,temperature}_spectrum file :param ns: Number of species :param label: Type of fluctuations ('density' or 'temperature') ''' def __init__(self, filename, ky_file, nmodes, ns, spec_labels, **kw): OMFITascii.__init__(self, filename, **kw) self.dynaLoad = True OMFITdataset.__init__(self) self.ky_file = self.OMFITproperties['ky_file'] = ky_file self.nmodes = self.OMFITproperties['nmodes'] = nmodes self.ns = self.OMFITproperties['ns'] = ns self.spec_labels = self.OMFITproperties['spec_labels'] = spec_labels
[docs] @dynaLoad def load(self): ns = self.ns nmodes = self.nmodes ky = get_ky_spectrum(self.ky_file) nky = len(ky) with open(self.filename, 'r') as f: dens, temp, vpara, enpara = np.loadtxt(f, skiprows=4, unpack=True) dims = ("species", "ky", "mode_num") coords = dict(species=self.spec_labels, ky=ky, mode_num=np.arange(nmodes) + 1) density = dens.reshape(ns, nky, nmodes) self['density'] = xarray.DataArray(density, dims=dims, coords=coords) temperature = temp.reshape(ns, nky, nmodes) self['temperature'] = xarray.DataArray(temperature, dims=dims, coords=coords) parallel_vel = vpara.reshape(ns, nky, nmodes) self['parallel_velocity'] = xarray.DataArray(parallel_vel, dims=dims, coords=coords) parallel_energy = enpara.reshape(ns, nky, nmodes) self['parallel_energy'] = xarray.DataArray(parallel_energy, dims=dims, coords=coords)
[docs]class OMFITtglf(OMFITdir): ''' The purpose of this class is to be able to store all results from a given TGLF run in its native format, but parsing the important parts into the tree :param filename: Path to TGLF run ''' def __init__(self, filename, **kw): printd('Calling OMFITtglf init', topic='OMFITtglf') OMFITdir.__init__(self, filename, **kw) printd('print self.keys():', list(self.keys()), topic='OMFITtglf') # remove 'OMFIT_run_command.sh' if 'OMFIT_run_command.sh' in self: del self['OMFIT_run_command.sh'] # convert OMFITpath to OMFITascii for item in list(self.keys()): if isinstance(self[item], OMFITpath): self[item].__class__ = OMFITascii # rename input.tglf.gen to input.tglf if 'input.tglf.gen' in self: input_tglf = self['input.tglf'] = OMFITgacode(self['input.tglf.gen'].filename, noCopyToCWD=True) del self['input.tglf.gen'] # robust, consistent species labeling, ns = self['input.tglf']['NS'] from omfit_classes.utils_math import element_symbol spec_labels = [] lump_counter = 1 for i in range(1, ns + 1): charge = self['input.tglf'][f'ZS_{i}'] mass = self['input.tglf'][f'MASS_{i}'] try: l = element_symbol(charge, round(mass, 1) * 2).lower() except ValueError: l = f"lump{lump_counter}" lump_counter += 1 spec_labels += [l] self.spec_labels = spec_labels # consistent field labels, field_labels = ['phi'] if self['input.tglf']['USE_BPER']: field_labels += ['B_perp'] if self['input.tglf']['USE_BPAR']: field_labels += ['B_parallel'] self.field_labels = field_labels # Note: as part of the parsing process, some entries under SELF are deleted. # however we are not deleting the files these entries referred to, # and because OMFITtglf inherits from OMFITdir these files will be carried # through even if they are not visible in the OMFIT tree if np.any([str(k).startswith('out') for k in self]): self._parse_version() self._parse_prec() if not input_tglf['USE_TRANSPORT_MODEL']: # linear run self['wavefunction'] = OMFITtglf_wavefunction(self['out.tglf.wavefunction'].filename, noCopyToCWD=True) del self['out.tglf.wavefunction'] else: if 'out.tglf.eigenvalue_spectrum' in self: self['eigenvalue_spectrum'] = OMFITtglf_eig_spectrum( self['out.tglf.eigenvalue_spectrum'].filename, self['out.tglf.ky_spectrum'].filename, nmodes=input_tglf['NMODES'], noCopyToCWD=True, ) del self['out.tglf.eigenvalue_spectrum'] try: self._parse_potential_spectrum() except Exception as _excp: printe(_excp) try: self._parse_flucs_spectra() except Exception as _excp: printe(_excp) try: self._parse_flux_spectrum() except Exception as _excp: printe(_excp) try: self._parse_QL_flux_spectrum() except Exception as _excp: printe(_excp) # try: # Not currently a TGLF output, leave for future compatibility. # self._parse_QL_intensity_spectrum() # except Exception as _excp: # printe(_excp) try: self._parse_nete_crossphase_spectrum() except Exception as _excp: printe(_excp) try: self._parse_nsts_crossphase_spectrum() except Exception as _excp: printe(_excp) try: self._parse_gbflux() except Exception as _excp: printe(_excp) try: self._parse_run() except Exception as _excp: printe(_excp) try: self._parse_intensity_spectrum() except Exception as _excp: printe(_excp)
[docs] def plot(self): for k in self: if hasattr(self[k], 'plot'): self[k].plot()
def __delitem__(self, key): ''' Deleting an item only deletes it from the tree, not from the underlying directory (which ``OMFITdir`` would do) ''' super(OMFITdir, self).__delitem__(key) def _parse_flucs_spectra(self): ''' Parse the fluctuation spectra in out.tglf.{density,temperature}_spectrum ''' ns = self['input.tglf']['NS'] result = SortedDict() for field in ['density', 'temperature']: if '%s_spectrum' % field in self: continue fn = 'out.tglf.%s_spectrum' % field if fn not in self: printe('No %s file to parse' % fn) continue self['%s_spectrum' % field] = OMFITtglf_fluct_spectrum( self[fn].filename, self['out.tglf.ky_spectrum'].filename, ns, field, self.spec_labels, noCopyToCWD=True ) del self[fn] def _parse_potential_spectrum(self): ''' Parse the potential fluctuation spectrum in out.tglf.potential_spectrum ''' nm = self['input.tglf']['NMODES'] if 'potential_spectrum' in self: return for fn in ['out.tglf.potential_spectrum', 'out.tglf.field_spectrum']: if fn not in self and fn == 'out.tglf.potential_spectrum': continue elif fn not in self and fn == 'out.tglf.field_spectrum': printe('No %s file to parse' % fn) return self['potential_spectrum'] = OMFITtglf_potential_spectrum( self[fn].filename, self['out.tglf.ky_spectrum'].filename, nmodes=nm, noCopyToCWD=True ) del self[fn] def _parse_version(self): ''' Parse the version information in out.tglf.version ''' with open(self['out.tglf.version'].filename, 'r') as f: content = f.readlines() self['GACODE_VERSION'], self['GACODE_PLATFORM'], self['TIMESTAMP'] = [x.strip() for x in content[:3]] del self['out.tglf.version'] def _parse_prec(self): ''' Parse the out.tglf.prec file (a single number) ''' self['regression_prec'] = None if 'out.tglf.prec' in self: with open(self['out.tglf.prec'].filename, 'r') as f: content = f.read() self['regression_prec'] = float(content.strip()) del self['out.tglf.prec'] def _parse_flux_spectrum(self): ''' Parse the flux spectrum from out.tglf.sum_flux_spectrum ''' self['sum_flux_spectrum'] = OMFITtglf_flux_spectrum( self['out.tglf.sum_flux_spectrum'].filename, self['out.tglf.ky_spectrum'].filename, self.field_labels, self.spec_labels, noCopyToCWD=True, ) del self['out.tglf.sum_flux_spectrum'] def _parse_QL_flux_spectrum(self): ''' Parse the QL weight spectrum from out.tglf.QL_flux_spectrum ''' ns = self['input.tglf']['NS'] self['QL_flux_spectrum'] = OMFITtglf_QL_flux_spectrum( self['out.tglf.QL_flux_spectrum'].filename, self['out.tglf.ky_spectrum'].filename, self.field_labels, self.spec_labels, noCopyToCWD=False, ) # del self['out.tglf.QL_flux_spectrum'] # some workflows still parse the raw QL flux file def _parse_QL_intensity_spectrum(self): ''' Parse the QL weight spectrum from out.tglf.QL_intensity_spectrum ''' ns = self['input.tglf']['NS'] self['QL_intensity_spectrum'] = OMFITtglf_QL_intensity_spectrum( self['out.tglf.QL_intensity_spectrum'].filename, self['out.tglf.ky_spectrum'].filename, ns, self.spec_labels, noCopyToCWD=False, ) def _parse_nete_crossphase_spectrum(self): ''' Parse the cross phase spectrum from out.tglf.nete_crossphase_spectrum ''' input_tglf = self['input.tglf'] self['nete_crossphase_spectrum'] = OMFITtglf_nete_crossphase_spectrum( self['out.tglf.nete_crossphase_spectrum'].filename, self['out.tglf.ky_spectrum'].filename, nmodes=input_tglf['NMODES'], noCopyToCWD=True, ) del self['out.tglf.nete_crossphase_spectrum'] def _parse_nsts_crossphase_spectrum(self): ''' Parse the cross phase spectrum from out.tglf.nsts_crossphase_spectrum ''' input_tglf = self['input.tglf'] self['nsts_crossphase_spectrum'] = OMFITtglf_nsts_crossphase_spectrum( self['out.tglf.nsts_crossphase_spectrum'].filename, self['out.tglf.ky_spectrum'].filename, input_tglf['NMODES'], self.spec_labels, noCopyToCWD=True, ) del self['out.tglf.nsts_crossphase_spectrum'] def _parse_gbflux(self): ''' Parse the flux from the out.tglf.gbflux file ''' try: with open(self['out.tglf.gbflux'].filename) as f: content = f.read() tmp = list(map(float, content.split())) if 'std.tglf.gbflux' in self: with open(self['std.tglf.gbflux'].filename) as f: content = f.read() tmp = uarray(tmp, list(map(float, content.split()))) tmp = tolist(np.reshape(tmp, (4, -1))) species = ['elec'] + ['ion' + str(k) for k in range(1, len(tmp[0]))] tmp.insert(0, species) printd('Right before out.tglf.run creation', topic='OMFITtglf') result = SortedDict() result['header'] = '' result['columns'] = ['.', 'Gam/Gam_GB', 'Q/Q_GB', 'Pi/Pi_GB', 'S/S_GB'] result['data'] = torecarray(tmp, result['columns']) if 'out.tglf.gbflux' in self: del self['out.tglf.gbflux'] if 'std.tglf.gbflux' in self: del self['std.tglf.gbflux'] except ValueError: result = OMFITasciitable(self.filename + '/out.tglf.gbflux', noCopyToCWD=True) self['gbflux'] = result def _parse_run(self): ''' Parse the flux from the out.tglf.run file data should be same as gbflux file, but also includes local MHD stability ''' with open(self['out.tglf.run'].filename) as f: lines = f.readlines() results = SortedDict() lines = [line[:-2] for line in lines] # Remove '\n' from end of lines lines = [line.split() for line in lines] for line in lines: if 'D(R)' in line: for i, item in enumerate(line): try: results[line[i - 2]] = float(item) except Exception: pass elif 'Gam' in line[0]: results['.'] = line elif 'elec' in line[0] or 'ion' in line[0]: line_name = line[0] line_split = [float(l) for l in line[1:]] results[line_name] = line_split self['run'] = results del self['out.tglf.run'] def _parse_intensity_spectrum(self): input_tglf = self['input.tglf'] self['intensity_spectrum'] = OMFITtglf_intensity_spectrum( self.filename + '/out.tglf.intensity_spectrum', self['out.tglf.ky_spectrum'].filename, input_tglf['NMODES'], input_tglf['NS'], self.spec_labels, ) del self['out.tglf.intensity_spectrum']
[docs] def saturation_rule(self, saturation_rule_name): ky_spect = np.asarray(self['eigenvalue_spectrum']['ky']) gammas = np.asarray(self['eigenvalue_spectrum']['gamma']).T potential = self['potential_spectrum']['potential'].T.values with open(self['out.tglf.QL_flux_spectrum'].filename, 'r') as f: lines = f.readlines() nky, nm, ns, nfield, ntype = list(map(int, lines[3].split())) # QL weights with open(self['out.tglf.QL_flux_spectrum'].filename, 'r') as f: QL_data = np.loadtxt(f, skiprows=4, unpack=True).reshape(nky, nm, ns, nfield, ntype) particle_QL = QL_data[:, :, :, :, 0] energy_QL = QL_data[:, :, :, :, 1] toroidal_stress_QL = QL_data[:, :, :, :, 2] parallel_stress_QL = QL_data[:, :, :, :, 3] exchange_QL = QL_data[:, :, :, :, 4] with open(self['out.tglf.spectral_shift'].filename, 'r') as f: kx0_e = np.loadtxt(f, skiprows=5, unpack=True) with open(self['out.tglf.scalar_saturation_parameters'].filename, 'r') as f: ave_p0, B_unit, R_unit, q_unit, SAT_geo0_out, kx_geo0_out = np.loadtxt(f, skiprows=5, unpack=True) R_unit = np.ones((21, 2)) * R_unit return sum_ky_spectrum( sat_rule_in=saturation_rule_name, ky_spect=ky_spect, gp=gammas, ave_p0=ave_p0, R_unit=R_unit, kx0_e=kx0_e, potential=potential, particle_QL=particle_QL, energy_QL=energy_QL, toroidal_stress_QL=toroidal_stress_QL, parallel_stress_QL=parallel_stress_QL, exchange_QL=exchange_QL, etg_fact=1.25, c0=32.48, c1=0.534, exp1=1.547, cx_cy=0.56, alpha_x=1.15, **self['input.tglf'], )
def intensity_desat(ky_spect, gradP, q, taus_2): ''' Dummy Experimental SATuration rule :param ky_spect: poloidal wave number [nk] :param gradP: P_PRIME_LOC (pressure gradient - see tglf inputs: https://gacode.io/tglf/tglf_list.html) :param q: absolute value of safety factor (i.e. Q_LOC) :param taus_2: ratio of T_main_ion/ T_e ''' intensity_desat = (0.0082 / abs(gradP) + 0.1 * log10(ky_spect)) / (ky_spect ** ((3.81 * q) / (q + taus_2))) intensity_desat = np.c_[intensity_desat, intensity_desat] return intensity_desat def intensity_sat0( ky_spect, gp, ave_p0, R_unit, kx0_e, etg_fact, c0, c1, exp1, cx_cy, alpha_x, B_unit=1.0, as_1=1.0, zs_1=-1.0, taus_1=1.0, mass_2=1.0, alpha_quench=0, ): ''' SAT0 template for modifying the TGLF SAT0 intensity function from [Staebler et al., Nuclear Fusion, 2013], still needs to be normalized (see below) nk --> number of elements in ky spectrum nm --> number of modes ns --> number of species nf --> number of fields (1: electrostatic, 2: electromagnetic parallel, 3:electromagnetic perpendicular) :param ky_spect: poloidal wave number [nk] :param gp: growth rates [nk, nm] :param ave_p0: scalar average pressure :param R_unit: scalar normalized major radius :param kx0_e: spectral shift of the radial wavenumber due to VEXB_SHEAR [nk] :param etg_fact: scalar TGLF calibration coefficient [1.25] :param c0: scalar TGLF calibration coefficient [32.48] :param c1: scalar TGLF calibration coefficient [0.534] :param exp1: scalar TGLF calibration coefficient [1.547] :param cx_cy: scalar TGLF calibration coefficient [0.56] (from Eq.13) :param alpha_x: scalar TGLF calibration coefficient [1.15] (from Eq.13) :param B_unit: scalar normalized magnetic field (set to 1.0) :param as_1: scalar ratio of electron density to itself (must be 1.0) :param zs_1: scalar ratio of electron charge to the first ion charge (very likely to be -1.0) :param taus_1: scalar ratio of electron temperature to itself (must be 1.0) :param mass_2: scalar ratio of first ion mass to itself (must be 1.0) :param alpha_quench: scalar if alpha_quench==0 and any element in spectral shift array is greater than zero (versus equal zero), apply spectral shift routine :return: intensity function [nk, nm] ''' if as_1 != 1.0 or taus_1 != 1.0 or mass_2 != 1.0: raise ValueError('as_1, taus_1, mass_2 must be equal to 1.0') kp = np.c_[ky_spect, ky_spect] # add column makes two column array for dependence on two modes # kx0_e = np.c_[kx0_e, kx0_e] ks = kp * np.sqrt(taus_1 * mass_2) pols = (ave_p0 / np.abs(as_1 * zs_1 * zs_1)) ** 2 R_unit[R_unit == 0] = np.amax(R_unit) # when EV solver does not converge, R_unit is 0.0, but should be nonzero and the same for all ky wd0 = ks * np.sqrt(taus_1 / mass_2) / R_unit gnet = gp / wd0 cond = (alpha_quench == 0) * (np.abs(kx0_e) > 0) notcond = (alpha_quench != 0) + (np.abs(kx0_e) == 0) # Calculate intensity_given using scalar TGLF calibration coefficients cnorm = c0 * pols cnorm = cnorm / ((ks**etg_fact) * (ks > 1) + 1 * (ks <= 1)) intensity_out = cnorm * (wd0**2) * (gnet**exp1 + c1 * gnet) / (kp**4) intensity_out = intensity_out / (((1 + cx_cy * kx0_e**2) ** 2) * cond + 1 * notcond) intensity_out = intensity_out / (((1 + (alpha_x * kx0_e) ** 4) ** 2) * cond + 1 * notcond) intensity_out = intensity_out / B_unit**2 intensity_out = np.nan_to_num(intensity_out) intensity_out[ intensity_out == 0 ] = 10e10 # when EV solver did not converge, intensity and potential are zero; change zeros to large number before division return intensity_out # Careful: This still needs to be normalized; next operation is intensity_out = intensity_out * potential(TGLF SAT0 output) / intensity_out(default SAT0 params) # See example with default parameters below and regression test 'omfit/regression/test_tglf_satpy.py' def get_zonal_mixing( ky_mix, gamma_mix, **kw, ): """ :param ky_mix: poloidal wavenumber [nk] :param gamma_mix: most unstable growth rates [nk] :param **kw: keyword list in input.tglf """ nky = len(ky_mix) gammamax1 = gamma_mix[0] kymax1 = ky_mix[0] testmax1 = gammamax1 / kymax1 jmax1 = 0 kymin = 0 testmax = 0.0 j1 = 0 kycut = 0.8 / kw["rho_ion"] if kw["ALPHA_ZF"] < 0: kymin = 0.173 * np.sqrt(2.0) / kw["rho_ion"] if kw["SAT_RULE"] in [2, 3]: kycut = kw["grad_r0_out"] * kycut kymin = kw["grad_r0_out"] * kymin for j in range(0, nky - 1): if ky_mix[j] <= kycut and ky_mix[j + 1] >= kymin: j1 = j kymax1 = ky_mix[j] testmax1 = gamma_mix[j] / kymax1 if testmax1 > testmax: testmax = testmax1 jmax_mix = j if testmax == 0.0: jmax_mix = j1 kymax1 = ky_mix[jmax_mix] gammamax1 = gamma_mix[jmax_mix] if kymax1 < kymin: kymax1 = kymin gammamax1 = gamma_mix[0] + (gamma_mix[1] - gamma_mix[0]) * (kymin - ky_mix[0]) / (ky_mix[1] - ky_mix[0]) if jmax_mix > 0 and jmax_mix < j1: jmax1 = jmax_mix f0 = gamma_mix[jmax1 - 1] / ky_mix[jmax1 - 1] f1 = gamma_mix[jmax1] / ky_mix[jmax1] f2 = gamma_mix[jmax1 + 1] / ky_mix[jmax1 + 1] deltaky = ky_mix[jmax1 + 1] - ky_mix[jmax1 - 1] x1 = (ky_mix[jmax1] - ky_mix[jmax1 - 1]) / deltaky a = f0 b = (f1 - f0 * (1 - x1 * x1) - f2 * x1 * x1) / (x1 - x1 * x1) c = f2 - f0 - b xmax = -b / (2.0 * c) if ky_mix[jmax1 - 1] < kymin: xmin = (kymin - ky_mix[jmax1 - 1]) / deltaky else: xmin = 0.0 if xmax >= 1.0: kymax1 = ky_mix[jmax1 + 1] gammamax1 = f2 * kymax1 elif xmax < xmin: if xmin > 0.0: kymax1 = kymin gammamax1 = (a + b * xmin + c * xmin * xmin) * kymin else: kymax1 = ky_mix[jmax1 - 1] gammamax1 = f0 * kymax1 else: kymax1 = ky_mix[jmax1 - 1] + deltaky * xmax gammamax1 = (a + b * xmax + c * xmax * xmax) * kymax1 vzf_mix = gammamax1 / kymax1 kymax_mix = kymax1 return vzf_mix, kymax_mix, jmax_mix def get_sat_params(sat_rule_in, ky, gammas, mts=5.0, ms=128, small=0.00000001, **kw): """ This function calculates the scalar saturation parameters and spectral shift needed for the TGLF saturation rules, dependent on changes to 'tglf_geometry.f90' by Gary Staebler :mts: the number of points in the s-grid (flux surface contour) :ms: number of points along the arclength :ds: the arc length differential on a flux surface :R(ms): the major radius on the s-grid :Z(ms): the vertical coordinate on the s-grid :Bp(ms): the poloidal magnetic field on the s-grid normalized to B_unit :**kw: input.tglf """ drmajdx_loc = kw["DRMAJDX_LOC"] drmindx_loc = kw["DRMINDX_LOC"] kappa_loc = kw["KAPPA_LOC"] s_kappa_loc = kw["S_KAPPA_LOC"] rmin_loc = kw["RMIN_LOC"] rmaj_loc = kw["RMAJ_LOC"] zeta_loc = kw["ZETA_LOC"] q_s = kw["Q_LOC"] q_prime_s = kw["Q_PRIME_LOC"] p_prime_s = kw["P_PRIME_LOC"] delta_loc = kw["DELTA_LOC"] s_delta_loc = kw["S_DELTA_LOC"] s_zeta_loc = kw["S_ZETA_LOC"] alpha_e_in = kw["ALPHA_E"] vexb_shear = kw["VEXB_SHEAR"] sign_IT = kw["SIGN_IT"] units = kw["UNITS"] mass_2 = kw["MASS_2"] taus_2 = kw["TAUS_2"] zs_2 = kw["ZS_2"] zmaj_loc = 0.0 dzmajdx_loc = 0.0 norm_ave = 0.0 SAT_geo1_out = 0.0 SAT_geo2_out = 0.0 dlp = 0.0 R = np.zeros(ms + 1) Z = np.zeros(ms + 1) Bp = np.zeros(ms + 1) Bt = np.zeros(ms + 1) B = np.zeros(ms + 1) b_geo = np.zeros(ms + 1) qrat_geo = np.zeros(ms + 1) sin_u = np.zeros(ms + 1) s_p = np.zeros(ms + 1) r_curv = np.zeros(ms + 1) psi_x = np.zeros(ms + 1) costheta_geo = np.zeros(ms + 1) pi_2 = 2 * np.pi if rmin_loc < 0.00001: rmin_loc = 0.00001 vs_2 = np.sqrt(taus_2 / mass_2) gamma_reference_kx0 = gammas[0, :] # Miller geo rmin_s = rmin_loc Rmaj_s = rmaj_loc # compute the arclength around the flux surface: # initial values define dtheta theta = 0.0 x_delta = np.arcsin(delta_loc) arg_r = theta + x_delta * np.sin(theta) darg_r = 1.0 + x_delta * np.cos(theta) arg_z = theta + zeta_loc * np.sin(2.0 * theta) darg_z = 1.0 + zeta_loc * 2.0 * np.cos(2.0 * theta) r_t = -rmin_loc * np.sin(arg_r) * darg_r z_t = kappa_loc * rmin_loc * np.cos(arg_z) * darg_z l_t = np.sqrt(r_t**2 + z_t**2) # scale dtheta by l_t to keep mts points in each ds interval of size pi_2/ms dtheta = pi_2 / (mts * ms * l_t) l_t1 = l_t arclength = 0.0 while theta < pi_2: theta = theta + dtheta if theta > pi_2: theta = theta - dtheta dtheta = pi_2 - theta theta = pi_2 arg_r = theta + x_delta * np.sin(theta) darg_r = 1.0 + x_delta * np.cos(theta) # d(arg_r)/dtheta r_t = -rmin_loc * np.sin(arg_r) * darg_r # dR/dtheta arg_z = theta + zeta_loc * np.sin(2.0 * theta) darg_z = 1.0 + zeta_loc * 2.0 * np.cos(2.0 * theta) # d(arg_z)/dtheta z_t = kappa_loc * rmin_loc * np.cos(arg_z) * darg_z # dZ/dtheta l_t = np.sqrt(r_t**2 + z_t**2) # dl/dtheta arclength = arclength + 0.50 * (l_t + l_t1) * dtheta # arclength along flux surface in poloidal direction l_t1 = l_t # Find the theta points which map to an equally spaced s-grid of ms points along the arclength # going clockwise from the outboard midplane around the flux surface # by searching for the theta where dR**2 + dZ**2 >= ds**2 for a centered difference df=f(m+1)-f(m-1). # This keeps the finite difference error of dR/ds, dZ/ds on the s-grid small ds = arclength / ms t_s = np.zeros(ms + 1) t_s[ms] = -pi_2 # Make a first guess based on theta = 0.0 theta = 0.0 arg_r = theta + x_delta * np.sin(theta) darg_r = 1.0 + x_delta * np.cos(theta) arg_z = theta + zeta_loc * np.sin(2.0 * theta) darg_z = 1.0 + zeta_loc * 2.0 * np.cos(2.0 * theta) r_t = -rmin_loc * np.sin(arg_r) * darg_r z_t = kappa_loc * rmin_loc * np.cos(arg_z) * darg_z l_t = np.sqrt(r_t**2 + z_t**2) dtheta = -ds / l_t theta = dtheta l_t1 = l_t for m in range(1, int(ms / 2) + 1): arg_r = theta + x_delta * np.sin(theta) darg_r = 1.0 + x_delta * np.cos(theta) arg_z = theta + zeta_loc * np.sin(2.0 * theta) darg_z = 1.0 + zeta_loc * 2.0 * np.cos(2.0 * theta) r_t = -rmin_loc * np.sin(arg_r) * darg_r z_t = kappa_loc * rmin_loc * np.cos(arg_z) * darg_z l_t = np.sqrt(r_t**2 + z_t**2) dtheta = -ds / (0.5 * (l_t + l_t1)) t_s[m] = t_s[m - 1] + dtheta theta = t_s[m] + dtheta l_t1 = l_t # distribute endpoint error over interior points dtheta = (t_s[int(ms / 2)] - (-np.pi)) / (ms / 2) for m in range(1, int(ms / 2) + 1): t_s[m] = t_s[m] - (m) * dtheta t_s[ms - m] = -pi_2 - t_s[m] # Quinn additions, B_unit_out = np.zeros(ms + 1) grad_r_out = np.zeros(ms + 1) for m in range(0, ms + 1): theta = t_s[m] arg_r = theta + x_delta * np.sin(theta) darg_r = 1.0 + x_delta * np.cos(theta) arg_z = theta + zeta_loc * np.sin(2.0 * theta) darg_z = 1.0 + zeta_loc * 2.0 * np.cos(2.0 * theta) R[m] = rmaj_loc + rmin_loc * np.cos(arg_r) # = R(theta) Z[m] = zmaj_loc + kappa_loc * rmin_loc * np.sin(arg_z) # = Z(theta) R_t = -rmin_loc * np.sin(arg_r) * darg_r # = dR/dtheta Z_t = kappa_loc * rmin_loc * np.cos(arg_z) * darg_z # = dZ/dtheta l_t = np.sqrt(R_t**2 + Z_t**2) # = dl/dtheta R_r = ( drmajdx_loc + drmindx_loc * np.cos(arg_r) - np.sin(arg_r) * s_delta_loc * np.sin(theta) / np.sqrt(1.0 - delta_loc**2) ) # = dR/dr Z_r = ( dzmajdx_loc + kappa_loc * np.sin(arg_z) * (drmindx_loc + s_kappa_loc) + kappa_loc * np.cos(arg_z) * s_zeta_loc * np.sin(2.0 * theta) ) det = R_r * Z_t - R_t * Z_r # Jacobian grad_r = abs(l_t / det) if m == 0: B_unit = 1.0 / grad_r # B_unit choosen to make qrat_geo(0)/b_geo(0)=1.0 if drmindx_loc == 1.0: B_unit = 1.0 # Waltz-Miller convention B_unit_out[m] = B_unit grad_r_out[m] = grad_r Bp[m] = (rmin_s / (q_s * R[m])) * grad_r * B_unit p_prime_s = p_prime_s * B_unit q_prime_s = q_prime_s / B_unit psi_x[m] = R[m] * Bp[m] delta_s = 12.0 * ds ds2 = 12.0 * ds**2 for m in range(0, ms + 1): m1 = (ms + m - 2) % ms m2 = (ms + m - 1) % ms m3 = (m + 1) % ms m4 = (m + 2) % ms R_s = (R[m1] - 8.0 * R[m2] + 8.0 * R[m3] - R[m4]) / delta_s Z_s = (Z[m1] - 8.0 * Z[m2] + 8.0 * Z[m3] - Z[m4]) / delta_s s_p[m] = np.sqrt(R_s**2 + Z_s**2) R_ss = (-R[m1] + 16.0 * R[m2] - 30.0 * R[m] + 16.0 * R[m3] - R[m4]) / ds2 Z_ss = (-Z[m1] + 16.0 * Z[m2] - 30.0 * Z[m] + 16.0 * Z[m3] - Z[m4]) / ds2 r_curv[m] = (s_p[m] ** 3) / (R_s * Z_ss - Z_s * R_ss) sin_u[m] = -Z_s / s_p[m] # Compute f=R*Bt such that the eikonal S which solves # B*Grad(S)=0 has the correct quasi-periodicity S(s+Ls)=S(s)-2*pi*q_s, where Ls = arclength f = 0.0 for m in range(1, ms + 1): f = f + 0.5 * ds * (s_p[m - 1] / (R[m - 1] * psi_x[m - 1]) + s_p[m] / (R[m] * psi_x[m])) f = pi_2 * q_s / f for m in range(0, ms + 1): Bt[m] = f / R[m] B[m] = np.sqrt(Bt[m] ** 2 + Bp[m] ** 2) qrat_geo[m] = (rmin_s / R[m]) * (B[m] / Bp[m]) / q_s b_geo[m] = B[m] costheta_geo[m] = -Rmaj_s * (Bp[m] / (B[m]) ** 2) * (Bp[m] / r_curv[m] - (f**2 / (Bp[m] * (R[m]) ** 3)) * sin_u[m]) for m in range(1, ms + 1): dlp = s_p[m] * ds * (0.5 / Bp[m] + 0.5 / Bp[m - 1]) norm_ave += dlp SAT_geo1_out += dlp * ((b_geo[0] / b_geo[m - 1]) ** 4 + (b_geo[0] / b_geo[m]) ** 4) / 2.0 SAT_geo2_out += dlp * ((qrat_geo[0] / qrat_geo[m - 1]) ** 4 + (qrat_geo[0] / qrat_geo[m]) ** 4) / 2.0 SAT_geo1_out = SAT_geo1_out / norm_ave SAT_geo2_out = SAT_geo2_out / norm_ave if units == "GYRO" and sat_rule_in == 1: SAT_geo1_out = 1.0 SAT_geo2_out = 1.0 R_unit = Rmaj_s * b_geo[0] / (qrat_geo[0] * costheta_geo[0]) B_geo0_out = b_geo[0] Bt0_out = f / Rmaj_s grad_r0_out = b_geo[0] / qrat_geo[0] # Additional outputs for SAT2 G1(theta), Gq(theta) theta_out = t_s # theta grid over which everything is calculated. Bt_out = B # total magnetic field matching theta_out grid. # Compute spetral shift kx0_e vexb_shear_s = vexb_shear * sign_IT vexb_shear_kx0 = alpha_e_in * vexb_shear_s kx0_factor = abs(b_geo[0] / qrat_geo[0] ** 2) kx0_factor = 1.0 + 0.40 * (kx0_factor - 1.0) ** 2 kyi = ky * vs_2 * mass_2 / abs(zs_2) wE = kx0_factor * np.array([min(x / 0.3, 1.0) for x in kyi]) * vexb_shear_kx0 / gamma_reference_kx0 kx0_e = -(0.36 * vexb_shear_kx0 / gamma_reference_kx0 + 0.38 * wE * np.tanh((0.69 * wE) ** 6)) if sat_rule_in == 1: if units == "CGYRO": wE = 0.0 kx0_factor = 1.0 kx0_e = -(0.53 * vexb_shear_kx0 / gamma_reference_kx0 + 0.25 * wE * np.tanh((0.69 * wE) ** 6)) elif sat_rule_in == 2 or sat_rule_in == 3: kw["grad_r0_out"] = grad_r0_out kw["SAT_RULE"] = sat_rule_in if bool(kw["USE_AVE_ION_GRID"]): indices = [is_ for is_ in range(2, kw['NS'] + 1) if (kw[f'ZS_{is_}'] * kw[f'AS_{is_}']) / abs(kw['AS_1'] * kw['ZS_1']) > 0.1] charge = sum(kw[f'ZS_{is_}'] * kw[f'AS_{is_}'] for is_ in indices) rho_ion = sum( kw[f'ZS_{is_}'] * kw[f'AS_{is_}'] * (kw[f'MASS_{is_}'] * kw[f'TAUS_{is_}']) ** 0.5 / kw[f'ZS_{is_}'] for is_ in indices ) rho_ion /= charge if charge != 0 else 1 else: rho_ion = (kw['MASS_2'] * kw['TAUS_2']) ** 0.5 / kw['ZS_2'] kw['rho_ion'] = rho_ion vzf_out, kymax_out, _ = get_zonal_mixing(ky, gamma_reference_kx0, **kw) if abs(kymax_out * vzf_out * vexb_shear_kx0) > small: kx0_e = -0.32 * ((ky / kymax_out) ** 0.3) * vexb_shear_kx0 / (ky * vzf_out) else: kx0_e = np.zeros(len(ky)) a0 = 1.3 if sat_rule_in == 1: a0 = 1.45 elif sat_rule_in == 2 or sat_rule_in == 3: a0 = 1.6 kx0_e = np.array([min(abs(x), a0) * x / abs(x) for x in kx0_e]) kx0_e[np.isnan(kx0_e)] = 0 return ( kx0_e, SAT_geo1_out, SAT_geo2_out, R_unit, Bt0_out, B_geo0_out, grad_r0_out, theta_out, Bt_out, grad_r_out, B_unit_out, ) def mode_transition_function(x, y1, y2, x_ITG, x_TEM): if x < x_ITG: y = y1 elif x > x_TEM: y = y2 else: y = y1 * ((x_TEM - x) / (x_TEM - x_ITG)) + y2 * ((x - x_ITG) / (x_TEM - x_ITG)) return y def linear_interpolation(x, y, x0): i = 0 while x[i] < x0: i += 1 y0 = ((y[i] - y[i - 1]) * x0 + (x[i] * y[i - 1] - x[i - 1] * y[i])) / (x[i] - x[i - 1]) return y0 def intensity_sat( sat_rule_in, ky_spect, gp, kx0_e, nmodes, QL_data, expsub=2.0, alpha_zf_in=1.0, kx_geo0_out=1.0, SAT_geo_out=1.0, bz1=0.0, bz2=0.0, return_phi_params=False, **kw, ): """ TGLF SAT1 from [Staebler et al., 2016, PoP], SAT2 from [Staebler et al., NF, 2021] and [Staebler et al., PPCF, 2021], and SAT3 [Dudding et al., NF, 2022] takes both CGYRO and TGLF outputs as inputs :param sat_rule_in: saturation rule [1, 2, 3] :param ky_spect: poloidal wavenumber [nk] :param gp: growth rates [nk, nm] :param kx0_e: spectral shift of the radial wavenumber due to VEXB_SHEAR [nk] :param nmodes_in: number of modes stored in quasi-linear weights [1, ..., 5] :param QL_data: Quasi-linear weights [ky, nm, ns, nf, type (i.e. particle,energy,stress_tor,stress_para,exchange)] :param expsub: scalar exponent in gammaeff calculation [2.0] :param alpha_zf_in: scalar switch for the zonal flow coupling coefficient [1.0] :param kx_geo_out: scalar switch for geometry [1.0] :param SAT_geo_out: scalar switch for geoemtry [1.0] :param bz1: scalar correction to zonal flow mixing term [0.0] :param bz2: scalar correction to zonal flow mixing term [0.0] :param return_phi_params: bool, option to return parameters for calculing the SAT1, SAT2 model for phi [False] :param **kw: keyword list in input.tglf """ if bool(kw["USE_AVE_ION_GRID"]): indices = [is_ for is_ in range(2, kw['NS'] + 1) if (kw[f'ZS_{is_}'] * kw[f'AS_{is_}']) / abs(kw['AS_1'] * kw['ZS_1']) > 0.1] charge = sum(kw[f'ZS_{is_}'] * kw[f'AS_{is_}'] for is_ in indices) rho_ion = sum( kw[f'ZS_{is_}'] * kw[f'AS_{is_}'] * (kw[f'MASS_{is_}'] * kw[f'TAUS_{is_}']) ** 0.5 / kw[f'ZS_{is_}'] for is_ in indices ) rho_ion /= charge if charge != 0 else 1 else: rho_ion = (kw['MASS_2'] * kw['TAUS_2']) ** 0.5 / kw['ZS_2'] kw['rho_ion'] = rho_ion nky = len(ky_spect) if len(np.shape(gp)) > 1: gammas1 = gp[:, 0] # SAT1 and SAT2 use the growth rates of the most unstable modes else: gammas1 = gp gamma_net = np.zeros(nky) if sat_rule_in == 1: etg_streamer = 1.05 kyetg = etg_streamer / kw["rho_ion"] measure = np.sqrt(kw["TAUS_1"] * kw["MASS_2"]) czf = abs(alpha_zf_in) small = 1.0e-10 cz1 = 0.48 * czf cz2 = 1.0 * czf cky = 3.0 sqcky = np.sqrt(cky) cnorm = 14.29 if sat_rule_in in [2, 3]: kw["UNITS"] = "CGYRO" units_in = kw["UNITS"] else: units_in = kw["UNITS"] kycut = 0.8 / kw["rho_ion"] # ITG/ETG-scale separation (for TEM scales see [Creely et al., PPCF, 2019]) vzf_out, kymax_out, jmax_out = get_zonal_mixing(ky_spect, gammas1, **kw) if kw["RLNP_CUTOFF"] > 0.0: ptot = 0 dlnpdr = 0 for i in range(1, kw["NS"] + 1, 1): ptot += kw["AS_%s" % i] * kw["TAUS_%s" % i] # only kinetic species dlnpdr += kw["AS_%s" % i] * kw["TAUS_%s" % i] * (kw["RLNS_%s" % i] + kw["RLTS_%s" % i]) dlnpdr = kw["RMAJ_LOC"] * dlnpdr / max(ptot, 0.01) if dlnpdr >= kw["RLNP_CUTOFF"]: dlnpdr = kw["RLNP_CUTOFF"] if dlnpdr < 4.0: dlnpdr = 4.0 else: dlnpdr = 12.0 if sat_rule_in == 2 or sat_rule_in == 3: # SAT2 fit for CGYRO linear modes NF 2021 paper b0 = 0.76 b1 = 1.22 b2 = 3.74 if nmodes > 1: b2 = 3.55 b3 = 1.0 d1 = (kw["Bt0_out"] / kw["B_geo0_out"]) ** 4 # PPCF paper 2020 d1 = d1 / kw["grad_r0_out"] # WARNING: this is correct, but it's the reciprocal in the paper (typo in paper) Gq = kw["B_geo0_out"] / kw["grad_r0_out"] d2 = b3 / Gq**2 cnorm = b2 * (12.0 / dlnpdr) kyetg = 1000.0 # does not impact SAT2 cky = 3.0 sqcky = np.sqrt(cky) kycut = b0 * kymax_out cz1 = 0.0 cz2 = 1.05 * czf measure = 1.0 / kymax_out if sat_rule_in == 3: kmax = kymax_out gmax = vzf_out * kymax_out kmin = 0.685 * kmax aoverb = -1.0 / (2 * kmin) coverb = -0.751 * kmax kT = 1.0 / kw["rho_ion"] # SAT3 used up to ky rho_av = 1.0, then SAT2 k0 = 0.6 * kmin kP = 2.0 * kmin c_1 = -2.42 x_ITG = 0.8 x_TEM = 1.0 Y_ITG = 3.3 * (gmax**2) / (kmax**5) Y_TEM = 12.7 * (gmax**2) / (kmax**4) scal = 0.82 # Q(SAT3 GA D) / (2 * QLA(ITG,Q) * Q(SAT2 GA D)) Ys = np.zeros(nmodes) xs = np.zeros(nmodes) for k in range(1, nmodes + 1): sum_W_i = 0 # sum over ion species, requires electrons to be species 1 for is_ in range(2, np.shape(QL_data)[2] + 1): sum_W_i += QL_data[:, k - 1, is_ - 1, 0, 1] # check for singularities in weight ratio near kmax i = 1 while ky_spect[i - 1] < kmax: i += 1 if sum_W_i[i - 1] == 0.0 or sum_W_i[i - 2] == 0.0: x = 0.5 else: abs_W_ratio = np.abs(QL_data[:, k - 1, 0, 0, 1] / sum_W_i) abs_W_ratio = np.nan_to_num(abs_W_ratio) x = linear_interpolation(ky_spect, abs_W_ratio, kmax) xs[k - 1] = x Y = mode_transition_function(x, Y_ITG, Y_TEM, x_ITG, x_TEM) Ys[k - 1] = Y ax = 0.0 ay = 0.0 exp_ax = 1 if kw["ALPHA_QUENCH"] == 0.0: if sat_rule_in == 1: # spectral shift model parameters ax = 1.15 ay = 0.56 exp_ax = 4 elif sat_rule_in == 2 or sat_rule_in == 3: ax = 1.21 ay = 1.0 exp_ax = 2 units_in = "CGYRO" for j in range(0, nky): kx = kx0_e[j] if sat_rule_in == 2 or sat_rule_in == 3: ky0 = ky_spect[j] if ky0 < kycut: kx_width = kycut / kw["grad_r0_out"] else: kx_width = kycut / kw["grad_r0_out"] + b1 * (ky0 - kycut) * Gq kx = kx * ky0 / kx_width gamma_net[j] = gammas1[j] / (1.0 + abs(ax * kx) ** exp_ax) if sat_rule_in == 1: vzf_out, kymax_out, jmax_out = get_zonal_mixing(ky_spect, gamma_net, **kw) else: vzf_out_fp = vzf_out vzf_out = vzf_out * gamma_net[jmax_out] / max(gammas1[jmax_out], small) gammamax1 = vzf_out * kymax_out kymax1 = kymax_out jmax1 = jmax_out vzf1 = vzf_out # include zonal flow effects on growth rate model: gamma_mix1 = np.zeros(nky) gamma = np.zeros(nky) for j in range(0, nky): gamma0 = gamma_net[j] ky0 = ky_spect[j] if sat_rule_in == 1: if ky0 < kymax1: gamma[j] = max(gamma0 - cz1 * (kymax1 - ky0) * vzf1, 0.0) else: gamma[j] = cz2 * gammamax1 + max(gamma0 - cz2 * vzf1 * ky0, 0.0) elif sat_rule_in == 2 or sat_rule_in == 3: if ky0 < kymax1: gamma[j] = gamma0 else: gamma[j] = gammamax1 + max(gamma0 - cz2 * vzf1 * ky0, 0.0) gamma_mix1[j] = gamma[j] # Mix over ky>kymax with integration weight mixnorm1 = np.zeros(nky) for j in range(jmax1 + 2, nky): gamma_ave = 0.0 mixnorm1 = ky_spect[j] * ( np.arctan(sqcky * (ky_spect[nky - 1] / ky_spect[j] - 1.0)) - np.arctan(sqcky * (ky_spect[jmax1 + 1] / ky_spect[j] - 1.0)) ) for i in range(jmax1 + 1, nky - 1): ky_1 = ky_spect[i] ky_2 = ky_spect[i + 1] mix1 = ky_spect[j] * (np.arctan(sqcky * (ky_2 / ky_spect[j] - 1.0)) - np.arctan(sqcky * (ky_1 / ky_spect[j] - 1.0))) delta = (gamma[i + 1] - gamma[i]) / (ky_2 - ky_1) mix2 = ky_spect[j] * mix1 + (ky_spect[j] * ky_spect[j] / (2.0 * sqcky)) * ( np.log(cky * (ky_2 - ky_spect[j]) ** 2 + ky_spect[j] ** 2) - np.log(cky * (ky_1 - ky_spect[j]) ** 2 + ky_spect[j] ** 2) ) gamma_ave = gamma_ave + (gamma[i] - ky_1 * delta) * mix1 + delta * mix2 gamma_mix1[j] = gamma_ave / mixnorm1 if sat_rule_in == 3: gamma_fp = np.zeros_like(ky_spect) # Assuming ky_spect is a numpy array gamma = np.zeros_like(ky_spect) # Assuming ky_spect is a numpy array for j in range(1, nky + 1): gamma0 = gammas1[j - 1] ky0 = ky_spect[j - 1] if ky0 < kymax1: gamma[j - 1] = gamma0 else: gamma[j - 1] = (gammamax1 * (vzf_out_fp / vzf_out)) + max(gamma0 - cz2 * vzf_out_fp * ky0, 0.0) gamma_fp[j - 1] = gamma[j - 1] # USE_MIX is true by default for j in range(jmax1 + 3, nky + 1): # careful: I'm switching here to Fortran indexing, but found jmax1 using python indexing gamma_ave = 0.0 ky0 = ky_spect[j - 1] kx = kx0_e[j - 1] mixnorm = ky0 * (np.arctan(sqcky * (ky_spect[nky - 1] / ky0 - 1.0)) - np.arctan(sqcky * (ky_spect[jmax1 + 1] / ky0 - 1.0))) for i in range(jmax1 + 2, nky): # careful: I'm switching here to Fortran indexing, but found jmax1 using python indexing ky1 = ky_spect[i - 1] ky2 = ky_spect[i] mix1 = ky0 * (np.arctan(sqcky * (ky2 / ky0 - 1.0)) - np.arctan(sqcky * (ky1 / ky0 - 1.0))) delta = (gamma[i] - gamma[i - 1]) / (ky2 - ky1) mix2 = ky0 * mix1 + (ky0 * ky0 / (2.0 * sqcky)) * ( np.log(cky * (ky2 - ky0) ** 2 + ky0**2) - np.log(cky * (ky1 - ky0) ** 2 + ky0**2) ) gamma_ave += (gamma[i - 1] - ky1 * delta) * mix1 + delta * mix2 gamma_fp[j - 1] = gamma_ave / mixnorm if sat_rule_in == 3: if ky_spect[-1] >= kT: dummy_interp = np.zeros_like(ky_spect) k = 0 while ky_spect[k] < kT: k += 1 for i in range(k - 1, k + 1): gamma0 = gp[i, 0] ky0 = ky_spect[i] kx = kx0_e[i] if ky0 < kycut: kx_width = kycut / kw["grad_r0_out"] sat_geo_factor = kw["SAT_geo0_out"] * d1 * kw["SAT_geo1_out"] else: kx_width = kycut / kw["grad_r0_out"] + b1 * (ky0 - kycut) * Gq sat_geo_factor = kw["SAT_geo0_out"] * (d1 * kw["SAT_geo1_out"] * kycut + (ky0 - kycut) * d2 * kw["SAT_geo2_out"]) / ky0 kx = kx * ky0 / kx_width gammaeff = 0.0 if gamma0 > small: gammaeff = gamma_fp[i] # potentials without multimode and ExB effects, added later dummy_interp[i] = scal * measure * cnorm * (gammaeff / (kx_width * ky0)) ** 2 if units_in != "GYRO": dummy_interp[i] = sat_geo_factor * dummy_interp[i] YT = linear_interpolation(ky_spect, dummy_interp, kT) YTs = np.array([YT] * nmodes) else: if aoverb * (kP**2) + kP + coverb - ((kP - kT) * (2 * aoverb * kP + 1)) == 0: YTs = np.zeros(nmodes) else: YTs = np.zeros(nmodes) for i in range(1, nmodes + 1): YTs[i - 1] = Ys[i - 1] * ( ((aoverb * (k0**2) + k0 + coverb) / (aoverb * (kP**2) + kP + coverb - ((kP - kT) * (2 * aoverb * kP + 1)))) ** abs(c_1) ) # preallocate [nky] arrays for phi_params gammaeff_out = np.zeros((nky, nmodes)) sig_ratio_out = np.zeros((nky, nmodes)) # SAT3 kx_width_out = np.zeros(nky) sat_geo_factor_out = np.zeros(nky) # intensity field_spectrum_out = np.zeros((nky, nmodes)) for j in range(0, nky): gamma0 = gp[j, 0] ky0 = ky_spect[j] kx = kx0_e[j] if sat_rule_in == 1: sat_geo_factor = kw["SAT_geo0_out"] kx_width = ky0 if sat_rule_in == 2 or sat_rule_in == 3: if ky0 < kycut: kx_width = kycut / kw["grad_r0_out"] sat_geo_factor = kw["SAT_geo0_out"] * d1 * kw["SAT_geo1_out"] else: kx_width = kycut / kw["grad_r0_out"] + b1 * (ky0 - kycut) * Gq sat_geo_factor = kw["SAT_geo0_out"] * (d1 * kw["SAT_geo1_out"] * kycut + (ky0 - kycut) * d2 * kw["SAT_geo2_out"]) / ky0 kx = kx * ky0 / kx_width if sat_rule_in == 1 or sat_rule_in == 2: for i in range(0, nmodes): gammaeff = 0.0 if gamma0 > small: gammaeff = gamma_mix1[j] * (gp[j, i] / gamma0) ** expsub if ky0 > kyetg: gammaeff = gammaeff * np.sqrt(ky0 / kyetg) field_spectrum_out[j, i] = measure * cnorm * ((gammaeff / (kx_width * ky0)) / (1.0 + ay * kx**2)) ** 2 if units_in != "GYRO": field_spectrum_out[j, i] = sat_geo_factor * field_spectrum_out[j, i] # add these outputs gammaeff_out[j, i] = gammaeff kx_width_out[j] = kx_width sat_geo_factor_out[j] = sat_geo_factor elif sat_rule_in == 3: # First part if gamma_fp[j] == 0: Fky = 0.0 else: Fky = (gamma_mix1[j] / gamma_fp[j]) ** 2 / (1.0 + ay * (kx**2)) ** 2 for i in range(1, nmodes + 1): field_spectrum_out[j, i - 1] = 0.0 gammaeff = 0.0 if gamma0 > small: if ky0 <= kP: # initial quadratic sig_ratio = (aoverb * (ky0**2) + ky0 + coverb) / (aoverb * (k0**2) + k0 + coverb) field_spectrum_out[j, i - 1] = Ys[i - 1] * (sig_ratio**c_1) * Fky * (gp[j, i - 1] / gamma0) ** (2 * expsub) elif ky0 <= kT: # connecting quadratic if YTs[i - 1] == 0.0 or kP == kT: field_spectrum_out[j, i - 1] = 0.0 else: doversig0 = ((Ys[i - 1] / YTs[i - 1]) ** (1.0 / abs(c_1))) - ( (aoverb * (kP**2) + kP + coverb - ((kP - kT) * (2 * aoverb * kP + 1))) / (aoverb * (k0**2) + k0 + coverb) ) doversig0 = doversig0 * (1.0 / ((kP - kT) ** 2)) eoversig0 = -2 * doversig0 * kP + ((2 * aoverb * kP + 1) / (aoverb * (k0**2) + k0 + coverb)) foversig0 = ((Ys[i - 1] / YTs[i - 1]) ** (1.0 / abs(c_1))) - eoversig0 * kT - doversig0 * (kT**2) sig_ratio = doversig0 * (ky0**2) + eoversig0 * ky0 + foversig0 field_spectrum_out[j, i - 1] = Ys[i - 1] * (sig_ratio**c_1) * Fky * (gp[j, i - 1] / gamma0) ** (2 * expsub) else: # SAT2 for electron scale gammaeff = gamma_mix1[j] * (gp[j, i - 1] / gamma0) ** expsub if ky0 > kyetg: gammaeff = gammaeff * np.sqrt(ky0 / kyetg) field_spectrum_out[j, i - 1] = scal * measure * cnorm * ((gammaeff / (kx_width * ky0)) / (1.0 + ay * kx**2)) ** 2 if units_in != "GYRO": field_spectrum_out[j, i - 1] = sat_geo_factor * field_spectrum_out[j, i - 1] # add these outputs gammaeff_out[j, i - 1] = gammaeff sig_ratio_out[j, i - 1] = sig_ratio kx_width_out[j] = kx_width sat_geo_factor_out[j] = sat_geo_factor # SAT3 QLA part QLA_P = 0.0 QLA_E = 0.0 if sat_rule_in == 3: QLA_P = np.zeros(nmodes) QLA_E = np.zeros(nmodes) for k in range(1, nmodes + 1): # factor of 2 included for real symmetry QLA_P[k - 1] = 2 * mode_transition_function(xs[k - 1], 1.1, 0.6, x_ITG, x_TEM) QLA_E[k - 1] = 2 * mode_transition_function(xs[k - 1], 0.75, 0.6, x_ITG, x_TEM) QLA_O = 2 * 0.8 else: QLA_P = 1.0 QLA_E = 1.0 QLA_O = 1.0 phinorm = field_spectrum_out # so the normal behavior doesn't change, if return_phi_params: out = dict( phinorm=phinorm, kx_width=kx_width_out, # [nky] kx_model (kx rms width) gammaeff=gammaeff_out, # [nky, nmodes] effective growthrate kx0_e=kx0_e, # [nky] spectral shift in kx ax=ax, # SAT1 (cx), SAT2 (alpha_x) ay=ay, # SAT1 (cy) exp_ax=exp_ax, # SAT2 (sigma_x) sat_geo_factor=sat_geo_factor_out, # SAT2=G(theta)**2; SAT1=sat_geo0_out ) if sat_rule_in == 2: # add G(theta) params, out.update(dict(d1=d1, d2=d2, kycut=kycut, b3=b3)) if sat_rule_in == 3: out.update(dict(sig_ratio=sig_ratio_out, k0=k0)) else: out = phinorm, QLA_P, QLA_E, QLA_O # SAT123 intensity and QLA params return out def reconstruct_kxky_phi(ky_grid, kx_grid, gammas, imode=0, theta_grid=None, make_plots=False, QL_data=None, **kw): '''Reconstruct the TGLF spectral shift model for the saturated potential spectrum. This function can be used for SAT1, SAT2, or SAT3 (experimental) The SAT2 SS-model also contains the \theta dim, the kxky_phi output may be thetakxky_phi (if len(theta_grid) > 1) :arg ky_grid: 1d np.array [nky], ky's from eigenvalue spectrum from TGLF run. :arg kx_grid: 1d np.array [nkx], kx's over which to reconstruct the kxky_phi spectrum. :arg gammas: 2d np.array [nky,nmodes], growthrates from eig.value spectrum from TGLF run. :kwarg imode: int, index of mode to use for reconstruction. :kwarg theta_grid: 1d np.array [ntheta], theta's over which to reconstruct (SAT2 only), None -> theta=0 :kwarg QL_data: 5d np.array [ky, modes, species, fields, 5 (type)], QL (flux) weights used in SAT3 only. NOTE: type must be arranged: ["particle","energy","toroidal stress","parallel stress","exchange"] :kwarg make_plots: bool, for debugging. :kwarg **kw: input.tglf ''' sat_rule_in = kw["SAT_RULE"] nmodes = kw["NMODES"] if sat_rule_in == 0: printe("ERROR: (reconstruct_kxky_phi) cannot reconstruct kxky_phi for SAT0") return elif sat_rule_in == 3: printw("WARN: (reconstruct_kxky_phi) SAT3 2D spectrum is underconstrained by design.") if QL_data is None: printe("ERROR: (reconstruct_kxky_phi) QL_data cannot be 'None' for SAT3") return if make_plots: import matplotlib.pyplot as plt if QL_data is None: # Not used by SAT1, 2 # Must be shape: [ky, modes, species, fields, 5 (type)] QL_data = np.zeros((len(ky_grid), nmodes, 3, 3, 5)) # call get_sat_params(), # NOTE: output has been expanded to include theta_out, Bt_out, grad_r_out, and B_unit_out. kx0_e, SAT_geo1_out, SAT_geo2_out, R_unit, Bt0_out, B_geo0_out, grad_r0_out, theta_out, Bt_out, grad_r_out, B_unit_out = get_sat_params( sat_rule_in, ky_grid, gammas.T, **kw ) sat_params = dict( Bt0_out=Bt0_out, B_geo0_out=B_geo0_out, grad_r0_out=grad_r0_out, SAT_geo0_out=1.0, SAT_geo1_out=SAT_geo1_out, SAT_geo2_out=SAT_geo2_out, ) # call intensity_sat(), # NOTE: the ouput is totally different when return_phi_params = True phi_params = intensity_sat(sat_rule_in, ky_grid, gammas, kx0_e, nmodes, QL_data=QL_data, return_phi_params=True, **sat_params, **kw) # --- --- --- SAT1 --- --- --- # eq. 13 of [1] Staebler et al. "New Paradigm..." (2013) # - <k_x> is given around eq. 14 of [1]. kx0_e = spectral_shift_out = <kx>/ky # - NOTE: kx_width = ky # - ay (="cx/cy") constant = 0.56 if sat_rule_in == 1: ay = 0.56 phi2 = copy.deepcopy(phi_params["phinorm"][:, imode]) # remove the geo-factor (for SAT1 sat_geo_factor = 1.0) phi2 /= phi_params["sat_geo_factor"] # remove the influence of evaluating at kx=<kx>, phi2 *= (1 + ay * kx0_e**2) ** 2 kx_grid = np.atleast_2d(kx_grid).T # broadcasting: [Nkx, 1] kx_factor = 1 + ay * kx0_e**2 + (ay / ky_grid**2) * (kx_grid - kx0_e * ky_grid) ** 2 kxky_phi = np.sqrt(phi2) / kx_factor # --- --- --- SAT2 --- --- --- # eq. 34 of [1] Staebler et al. "Verification..." (2021). # Start with the |dphi|^2 = phinorm. # Remove the effect of evaluating at kx=kx0e and fs.averaging. # Then we re-inject the \theta and kx dependance. # # Therefore we need G(\theta), k_x0, k_x^model # - kx0_e (="k_x0/ky") calculated by get_sat_params. # - kx_width (="k_x^model") calculated by intensity_sat (eq. 21 of [1]) # - G(theta) is calculated below, more complicated becase sat_geo_factor includes a fs.avg. if sat_rule_in == 2: phi2 = copy.deepcopy(phi_params["phinorm"][:, imode]) kx0 = kx0_e * ky_grid # remove the applied geo-factor: # NOTE: this factor is basically <G(\theta)^2>_theta phi2 /= phi_params["sat_geo_factor"] # remove the influence of evaluating at kx=kx0e, phi2 *= (1 + (kx0 / phi_params["kx_width"]) ** 2) ** 2 kx_grid = np.atleast_2d(kx_grid).T # broadcasting: [Nkx, 1] kx_factor = 1 + (kx0 / phi_params["kx_width"]) ** 2 + ((kx_grid - kx0) / phi_params["kx_width"]) ** 2 kxky_phi = np.sqrt(phi2) / kx_factor # eqs. 16-20 of [1] # See also [2] Staebler et al. "Geometry dependence..." (2021) # Compute the geometry factor from scratch, if theta_grid is None: theta_grid = np.array([0.0]) ntheta = len(theta_grid) nky = len(ky_grid) # apply eq. 19, 20 of [1] G1 = (B_geo0_out / Bt_out) ** 4 # = (B(0)/B(theta))**4 Gq = grad_r_out * B_unit_out / Bt_out # = |grad r|*B_unit/B(theta) Gq = 1 / Gq # WARNING: There is a typo in [1], it's correct in [2] G2 = (Gq[0] / Gq) ** 4 # = (Gq(0)/Gq(theta))**4 if make_plots: fig, ax = plt.subplots(1, 1, num="G-Factors SAT2") ax.plot(theta_out / np.pi, G1, label=r'$G_1(\theta)$') ax.plot(theta_out / np.pi, Gq, label=r'$G_q(\theta)$') ax.plot(theta_out / np.pi, G2, label=r'$G_2(\theta)$') ax.axhline(1.0, ls='--', color='k') # both G1, G2 need to go to 1 at theta = 0. ax.set_xlabel(r"$\theta/\pi$") ax.legend() # Interpolate G1, G2 onto the target theta grid, from scipy.interpolate import interp1d G1 = interp1d(theta_out, G1)(theta_grid) G2 = interp1d(theta_out, G2)(theta_grid) G_theta = np.zeros((ntheta, nky)) for i, ky0 in enumerate(ky_grid): if ky0 < phi_params["kycut"]: G_theta[:, i] = np.sqrt(phi_params["d1"] * G1) else: term1 = phi_params["d1"] * G1 * phi_params["kycut"] term2 = phi_params["b3"] * phi_params["d2"] * G2 * (ky0 - phi_params["kycut"]) G_theta[:, i] = np.sqrt((term1 + term2) / ky0) # Following broadcasting rules we have, # G_theta: [ntheta,nky] # kxky_phi: [nkx,nky] # Make G_theta: [ntheta, 1, nky ] and kxky_phi [1, nkx, nky] # The result will be [ntheta, nkx, nky] (or squeezed to [nkx, nky]) kxky_phi = np.atleast_2d(np.squeeze(kxky_phi[np.newaxis, :, :] * G_theta[:, np.newaxis, :])) # --- --- --- SAT3 --- --- --- # eq. 17 of Dudding et al. "A new quasilinear..." (2022). # SAT3 is completely different, the spectral shift and absolute 2D peak are not directly modeled. # Our approach is to FIX: <kx> and <|dphi|^2> at kx=<kx>, ky=k0 # Then we use a nonlinear equation solver (scipy.optimize.fsolve) to build the 2D phi(kx, ky) spectrum. if sat_rule_in == 3: # The 1D potential spectrum (summed over kx and fs-avg.) phi2 = copy.deepcopy(phi_params["phinorm"][:, imode]) peak_phi2_k0 = 1.0 # = <|dphi|^2> at kx=<kx>, ky=k0 (Numerator of Dudding eq. 17 eval at ky=k0) kx_shift = 0.0 # = <kx> In the future this can be kx0e printw(f"WARN: (reconstruct_kxky_phi) fixing <kx>={kx_shift} and <|phi|^2>(kx=<kx>;ky=k0) = {peak_phi2_k0}") # get the sig_ratio from the phi_params, sig_ratio = phi_params["sig_ratio"][:, imode] # given the selected value of peak_phi2_k0, we solve for sigma_ky=k0 from scipy.interpolate import interp1d phi2_k0 = interp1d(ky_grid, phi2)(phi_params["k0"]) phi2_ratio = peak_phi2_k0 / phi2_k0 dkxi = 0.1 kxi = np.arange(-4, 4 + dkxi, dkxi) def target_func(sigky0): c1 = 1 / sigky0**2 * ((np.pi * sigky0 * phi2_ratio / dkxi) ** 2 - 2) # Equation 14 in Dudding. return np.sum(1 + c1 * (kxi - kx_shift) ** 2 + (kxi - kx_shift) ** 4 / sigky0**4) - phi2_ratio from scipy.optimize import fsolve print(f"INFO: (reconstruct_kxky_phi) solving for sigma_ky=k0 using...") print(f"\t k0 = {phi_params['k0']:.3f}") print(f"\t phinorm(ky=k0) = {phi2_k0:.3f}") print(f"\t init. guess = {min(sig_ratio):.3f}") sigky0 = fsolve(target_func, min(sig_ratio), maxfev=1000)[0] print(f"INFO: (reconstruct_kxky_phi) sigky0 = {sigky0}") # With this one value of sigma_ky=k0 we get all the values of sigma_ky, sigma_ky = sig_ratio * sigky0 kxi = np.atleast_2d(kxi).T # for broadcasting. def target_func(peak_phi2): c1 = 1 / sigma_ky**2 * ((np.pi * sigma_ky * peak_phi2 / phi2 / dkxi) ** 2 - 2) return peak_phi2 * np.sum(1 / (1 + c1 * (kxi - kx_shift) ** 2 + (kxi - kx_shift) ** 4 / sigma_ky**4), axis=0) - phi2 # vectorized fsolve, print(f"INFO: (reconstruct_kxky_phi) solving for phi2(kx=<kx>,ky) using...") print(f"\t init. guess = phi2/Nky") peak_phi2 = fsolve(target_func, phi2 / len(ky_grid), maxfev=1000) # Now we can build the final function, c1 = 1 / sigma_ky**2 * ((np.pi * sigma_ky * peak_phi2 / phi2 / dkxi) ** 2 - 2) kx_grid = np.atleast_2d(kx_grid).T # [Nkx, 1] kxky_phi = np.sqrt(peak_phi2 / (1 + c1 * (kx_grid - kx_shift) ** 2 + (kx_grid - kx_shift) ** 4 / sigma_ky**4)) # NORMALIZATION: the kxky_phi matrix has the GB-norm. # to obtain "real" units it should be multiplied by: (rho_s,unit * Te) / (a * e) if make_plots: fig, ax = plt.subplots(1, 1, num=f"omfit_tglf.py: reconstruct_kxky_phi (mode_num={imode+1})") if sat_rule_in == 1: txt = "" phinorm_txt = r"$\sqrt{\langle|\delta\phi|^2(k_{x0e},ky)\rangle_\theta}$" ax.semilogx(ky_grid, kx0_e, 'g-', label=r'$k_{x,0}^e$') elif sat_rule_in == 2: theta0 = theta_grid[0] * 180 / np.pi txt = rf"$|_{{\theta={theta0:.1f}^\circ}}$" phinorm_txt = r"$\sqrt{\langle|\delta\phi|^2(k_{x0e},ky)\rangle_\theta}$" ax.semilogx(ky_grid, phi_params["sat_geo_factor"], '--', color="orange", label=r"$\langle G^2(\theta)\rangle_\theta$") ax.semilogx(ky_grid, G_theta[0, :], color='orange', label=rf'G($\theta={theta0:.1f}^\circ$)') ax.semilogx(ky_grid, kx0_e, 'g-', label=r'$k_{x,0}^e$') ax.semilogx(ky_grid, phi_params['kx_width'] / 10, 'r-', label=r'$k_{x,width}/10$') elif sat_rule_in == 3: txt = "" phinorm_txt = r"$\sqrt{\langle|\delta\phi|^2(k_y)\rangle_{x,\theta}}$" ax.semilogx(ky_grid, sigma_ky, color='orange', label=rf'$\sigma_{{ky}}$ | $\sigma_{{ky=k0}}$={sigky0:.2f}') # Always plot the 1D potential spectrum output by TGLF (sqrt) ax.semilogx(ky_grid, np.sqrt(phi_params["phinorm"][:, imode]), 'k-', label=phinorm_txt) # Always plot the kx=0 slice, ikx0 = np.argmin(abs(np.squeeze(kx_grid))) if kxky_phi.ndim == 3: ax.semilogx(ky_grid, kxky_phi[0, ikx0, :], 'b-', lw=3, label=r'$|\delta\phi|(0,k_y)$' + txt) else: ax.semilogx(ky_grid, kxky_phi[ikx0, :], 'b-', lw=3, label=r'$|\delta\phi|(0,k_y)$' + txt) ax.set_xlabel(r"$k_y$") ax.axhline(0, ls='--', color='k') ax.legend() return kxky_phi def reconstruct_kxky_n( ky_grid, kx_grid, gammas, field_spectrum, intensity_spectrum, theta_grid=None, ispecies=0, imode=0, sum_modes=False, interp0=True, make_plots=False, **kw, ): '''Reconstruct the fluctuating density spectrum: kxky_n using, - the TGLF spectral shift model for the saturated potential spectrum (kxky_phi) - the QL weights for the density field Assumptions: the QL weights are independant of kx, theta (SAT2 only). :arg ky_grid: (np.array) [nky], ky's from eigenvalue spectrum from TGLF run. :arg kx_grid: (np.array) [nkx], kx's over which to reconstruct the kxky_phi spectrum. Hint: use something like: kx_grid = np.linspace(-4, 4, 64) :arg gammas: (np.array) [nky,nmodes], growthrates from eigenvvalue spectrum from TGLF run. :arg field_spectrum: (OMFITtglf_potential_spectrum) object from TGLF Experimental_spectra :arg intensity_spectrum: (OMFITtglf_intensity_spectrum) object from TGLF Experimental_spectra :kwarg theta_grid: (None or np.array) of theta values in [-2pi, 0], if None theta=0 is used. :kwarg ispecies: (int) species index for field, intensity spectra. electrons=0 :kwarg imode: (int) mode_num index for field, intensity spectra. :kwarg sum_modes: (bool) sum over modes, if True the value of imode is irrelevant. :kwarg interp0: (bool) option to interpolate over zeros in the middle of the potential spectrum. :kwarg make_plots: (bool) for debugging. :kwarg **kw: input.tglf ''' if interp0: from scipy.interpolate import interp1d if sum_modes: nmodes = kw["NMODES"] mode_inds = range(nmodes) else: nmodes = 1 mode_inds = [imode] # To safeguard overwriting when masking. field_spectrum = copy.deepcopy(field_spectrum) intensity_spectrum = copy.deepcopy(intensity_spectrum) if make_plots: import matplotlib.pyplot as plt fig, ax = plt.subplots(1, nmodes, num="omfit_tglf.py: reconstruct_kxky_n", sharex=True, sharey=True, squeeze=False) ax = ax.flatten() sum_kxky_n2 = 0.0 for im in mode_inds: kxky_phi = reconstruct_kxky_phi(ky_grid, kx_grid, gammas, imode=im, theta_grid=theta_grid, make_plots=make_plots, **kw) # QL Weights for the density field are backed-out of other TGLF outputs, phi_bar_out = field_spectrum["potential"].isel(mode_num=im).data # (nky,) n_intensity = intensity_spectrum["density"].isel(mode_num=im, species=ispecies).data # (nky,) # n_weights is a reconstruction of the TGLF variable "N_weight" # "N_weight" is calculated in: tglf_LS.f90: subroutine get_QL_weights # Formally, for each ky, mode, and species we compute: # N_weight[is] = SUM(j->N_BASIS) |dn[is,j]|^2 ! dn comes from the TGLF eigenvector. # N_weight /= phi_norm ! phi_norm = SUM(j->N_BASIS) |dphi[j]|^2 # cf. eq. 4 of Staebler et al. "Verification..." (2021). # TGLF does not write N_weight to a file (yet)... but it does write, # intensity_spectrum_out(1, is, iky, imode) = phi2_bar*N_weight # field_spectrum_out(2, iky, imode) = phi2_bar = phi_bar_out # To avoid div-by-zero, bad = phi_bar_out == 0 if any(bad): printw(f"WARN: (reconstruct_kxky_n) zeros found in potential_spectrum for ky = {ky_grid[bad]}") if interp0: printw("WARN: (reconstruct_kxky_n) interpolating over zeros in potential_spectrum") phi_bar_out = interp1d( ky_grid[~bad], phi_bar_out[~bad], bounds_error=False, fill_value=np.nan, # if there are zeros at the boundary we make them NaNs (then set to zero in n_weights) )(ky_grid) else: # fill with NaN, phi_bar_out[bad] = np.nan * phi_bar_out[bad] bad = n_intensity == 0 if any(bad): printw(f"WARN: (reconstruct_kxky_n) zeros found in intensity_spectrum for ky = {ky_grid[bad]}") if interp0: printw("WARN: (reconstruct_kxky_n) interpolating over zeros in intensity_spectrum") n_intensity = interp1d( ky_grid[~bad], n_intensity[~bad], bounds_error=False, fill_value=np.nan, # if there are zeros at the boundary we make them NaNs (then set to zero in n_weights) )(ky_grid) else: # fill with NaN, n_intensity[bad] = np.nan * n_intensity[bad] n_weights = n_intensity / phi_bar_out # (nky,) # send NaN's to zero, n_weights = np.nan_to_num(n_weights) # Work with the square of the density spectrum until the end, kxky_n2 = n_weights * np.square(kxky_phi) # (nky,) * ([ntheta], nkx, nky) --> ([ntheta], nkx, nky) # NORMALIZATION: this kxky_n matrix has the GB-norm. # to obtain "real" units it should be multiplied by: ne*(rho_s,unit/a) sum_kxky_n2 += kxky_n2 if make_plots: ikx = np.argmin(abs(kx_grid)) # kx = 0 ax[im].semilogx(ky_grid, phi_bar_out, 'b-', label="potential_spectrum") # <|dphi|^2> ax[im].semilogx(ky_grid, n_intensity, 'g-', label="intensity_spectrum") # <|dn|^2> ax[im].semilogx(ky_grid, n_weights, 'k-', label="QL n-weights") # <|dn|^2>/<|dphi|^2> ax[im].axhline(1.0, ls='--', color='k') if kxky_n2.ndim == 3: itheta = 0 txt = fr"$|_{{\theta={theta_grid[itheta]*180/np.pi:.1f}^\circ}}$" ax[im].semilogx(ky_grid, kxky_n2[itheta, ikx, :], 'r-', label=r"$|\delta n|^2$" + txt) else: ax[im].semilogx(ky_grid, kxky_n2[ikx, :], 'r-', label=r"$|\delta n|^2$") ax[im].set_xlabel(r"$k_y$") ax[im].set_title(f"mode_num={im+1}") if make_plots: ax[0].legend() # Note that we sum the squares of the modes, this is also done by TGLF when it creates the "density spectrum" object. kxky_n = np.sqrt(sum_kxky_n2) return kxky_n def reconstruct_kxky_T( ky_grid, kx_grid, gammas, field_spectrum, intensity_spectrum, ispecies=-1, imode=0, theta_grid=None, make_plots=False, **kw ): '''Reconstruct the 2D fluctuating temperature spectrum: kxky_T using, - the TGLF spectral shift model for the saturated potential spectrum (kxky_phi) - the QL phase shifts of the temperature field This function is an extension of the method above (reconstruct_kxky_phi). See the :arg, :kwarg definitions above. :arg field_spectrum: OMFITtglf_potential_spectrum object. :arg intensity_spectrum: OMFITtglf_intensity_spectrum object. :kwarg ispecies: int, used to select the proper field for QL weights. ''' kxky_phi = reconstruct_kxky_phi(ky_grid, kx_grid, gammas, imode=imode, theta_grid=theta_grid, make_plots=make_plots, **kw) # The TGLF output files: "out.tglf.intensity_spectrum", and "out.tglf.field_spectrum" # are needed to calculate the QL weights. phi_bar_out = field_spectrum["potential"].data[imode, :] # (nky,) T_intensity = intensity_spectrum["temperature"].data[imode, :, ispecies] # (nky,) # T_weights is a reconstruction of the TGLF variable "T_weight" # "T_weight" is calculated in: tglf_LS.f90: subroutine get_QL_weights # Formally, for each ky, mode, and species we compute: # T_weight[is] = SUM(j->N_BASIS) |dtemp[is,j]|^2 ! wherein, dtemp = dpress - dn # T_weight /= phi_norm ! phi_norm = SUM(j->N_BASIS) |dphi[j]|^2 # cf. eq. 4 of Staebler et al. "Verification..." (2021). # TGLF does not write T_weight to a file... but it does write, # intensity_spectrum_out(2, is, iky, imode) = phi2_bar*T_weight # field_spectrum_out(2, iky, imode) = phi2_bar = phi_bar_out # To avoid div-by-zero, bad = phi_bar_out == 0 if any(bad): printw("! zeros found in potential_spectrum - interpolate/extrapolate") from scipy.interpolate import interp1d phi_bar_out = interp1d(ky_grid[~bad], phi_bar_out[~bad], bounds_error=False, fill_value='extrapolate')(ky_grid) T_weights = T_intensity / phi_bar_out # (nky,) # ASSUME: QL weights are independent of kx, theta # Take sqrt() to get "T" instead of T^2. kxky_T = np.sqrt(T_weights) * kxky_phi # (nky,) * (nkx, nky, [ntheta]) --> (nkx, nky, [ntheta]) # NORMALIZATION: this kxky_T matrix has the GB-norm. # to obtain "real" units it should be multiplied by: (rho_s,unit * Te) / a if make_plots: fig, ax = plt.subplots(1, 1, num="reconstruct_kxky_T") ax.semilogx(ky_grid, phi_bar_out, label='potential_spectrum') ax.semilogx(ky_grid, T_intensity, label='intensity_spectrum') ax.semilogx(ky_grid, T_weights, 'k-', lw=2, label='QL T-weights') ax.axhline(1.0, ls='--', color='k') # N_weights = 1 --> no phase shift. ax.legend() return kxky_T def flux_integrals( NM, NS, NF, i, ky, dky0, dky1, particle, energy, toroidal_stress, parallel_stress, exchange, particle_flux_out, energy_flux_out, stress_tor_out, stress_par_out, exchange_out, q_low_out, taus_1=1.0, mass_2=1.0, ): ''' Compute the flux integrals ''' for nm in range(NM): for ns in range(NS): for j in range(NF): particle_flux_out[nm][ns][j] += dky0 * (0 if i == 0 else particle[i - 1][nm][ns][j]) + dky1 * particle[i][nm][ns][j] energy_flux_out[nm][ns][j] += dky0 * (0 if i == 0 else energy[i - 1][nm][ns][j]) + dky1 * energy[i][nm][ns][j] stress_tor_out[nm][ns][j] += ( dky0 * (0 if i == 0 else toroidal_stress[i - 1][nm][ns][j]) + dky1 * toroidal_stress[i][nm][ns][j] ) stress_par_out[nm][ns][j] += ( dky0 * (0 if i == 0 else parallel_stress[i - 1][nm][ns][j]) + dky1 * parallel_stress[i][nm][ns][j] ) exchange_out[nm][ns][j] += dky0 * (0 if i == 0 else exchange[i - 1][nm][ns][j]) + dky1 * exchange[i][nm][ns][j] if ky * taus_1 * mass_2 <= 1: q_low_out[nm][ns] = energy_flux_out[nm][ns][0] + energy_flux_out[nm][ns][1] return particle_flux_out, energy_flux_out, stress_tor_out, stress_par_out, exchange_out, q_low_out
[docs]def sum_ky_spectrum( sat_rule_in, ky_spect, gp, ave_p0, R_unit, kx0_e, potential, particle_QL, energy_QL, toroidal_stress_QL, parallel_stress_QL, exchange_QL, etg_fact=1.25, c0=32.48, c1=0.534, exp1=1.547, cx_cy=0.56, alpha_x=1.15, **kw, ): ''' Perform the sum over ky spectrum The inputs to this function should be already weighted by the intensity function nk --> number of elements in ky spectrum nm --> number of modes ns --> number of species nf --> number of fields (1: electrostatic, 2: electromagnetic parallel, 3:electromagnetic perpendicular) :param sat_rule_in: :param ky_spect: k_y spectrum [nk] :param gp: growth rates [nk, nm] :param ave_p0: scalar average pressure :param R_unit: scalar normalized major radius :param kx0_e: spectral shift of the radial wavenumber due to VEXB_SHEAR [nk] :param potential: input potential fluctuation spectrum [nk, nm] :param particle_QL: input particle fluctuation spectrum [nk, nm, ns, nf] :param energy_QL: input energy fluctuation spectrum [nk, nm, ns, nf] :param toroidal_stress_QL: input toroidal_stress fluctuation spectrum [nk, nm, ns, nf] :param parallel_stress_QL: input parallel_stress fluctuation spectrum [nk, nm, ns, nf] :param exchange_QL: input exchange fluctuation spectrum [nk, nm, ns, nf] :param etg_fact: scalar TGLF SAT0 calibration coefficient [1.25] :param c0: scalar TGLF SAT0 calibration coefficient [32.48] :param c1: scalar TGLF SAT0 calibration coefficient [0.534] :param exp1: scalar TGLF SAT0 calibration coefficient [1.547] :param cx_cy: scalar TGLF SAT0 calibration coefficient [0.56] (from TGLF 2008 POP Eq.13) :param alpha_x: scalar TGLF SAT0 calibration coefficient [1.15] (from TGLF 2008 POP Eq.13) :param \**kw: any additional argument should follow the naming convention of the TGLF_inputs :return: dictionary with summations over ky spectrum: * particle_flux_integral: [nm, ns, nf] * energy_flux_integral: [nm, ns, nf] * toroidal_stresses_integral: [nm, ns, nf] * parallel_stresses_integral: [nm, ns, nf] * exchange_flux_integral: [nm, ns, nf] ''' phi_bar_sum_out = 0 NM = len(energy_QL[0, :, 0, 0]) # get the number of modes NS = len(energy_QL[0, 0, :, 0]) # get the number of species NF = len(energy_QL[0, 0, 0, :]) # get the number of fields particle_flux_out = np.zeros((NM, NS, NF)) energy_flux_out = np.zeros((NM, NS, NF)) stress_tor_out = np.zeros((NM, NS, NF)) stress_par_out = np.zeros((NM, NS, NF)) exchange_out = np.zeros((NM, NS, NF)) q_low_out = np.zeros((NM, NS)) QLA_P = 1 QLA_E = 1 QLA_O = 1 QL_data = np.stack([particle_QL, energy_QL, toroidal_stress_QL, parallel_stress_QL, exchange_QL], axis=4) # Multiply QL weights with desired intensity if sat_rule_in in [0.0, 0, 'SAT0']: intensity_factor = ( intensity_sat0(ky_spect, gp, ave_p0, R_unit, kx0_e, etg_fact, c0, c1, exp1, cx_cy, alpha_x) * potential / intensity_sat0(ky_spect, gp, ave_p0, R_unit, kx0_e, 1.25, 32.48, 0.534, 1.547, 0.56, 1.15) ) elif sat_rule_in in [1.0, 1, 'SAT1', 2.0, 2, 'SAT2', 3.0, 3, 'SAT3']: intensity_factor, QLA_P, QLA_E, QLA_O = intensity_sat(sat_rule_in, ky_spect, gp, kx0_e, NM, QL_data, **kw) elif sat_rule_in in [-1.0, -1, 'DESAT']: intensity_factor = ( intensity_desat(ky_spect, kw['P_PRIME_LOC'], kw['Q_LOC'], kw['TAUS_2']) * potential / intensity_sat0(ky_spect, gp, ave_p0, R_unit, kx0_e, 1.25, 32.48, 0.534, 1.547, 0.56, 1.15) ) else: raise ValueError("sat_rule_in must be [0.0, 0, 'SAT0'] or [1.0, 1, 'SAT1']") shapes = [item.shape for item in [particle_QL, energy_QL, toroidal_stress_QL, parallel_stress_QL, exchange_QL] if item is not None][0] particle = np.zeros(shapes) energy = np.zeros(shapes) toroidal_stress = np.zeros(shapes) parallel_stress = np.zeros(shapes) exchange = np.zeros(shapes) for i in range(NS): # iterate over the species for j in range(NF): # iterate over the fields if particle_QL is not None: particle[:, :, i, j] = particle_QL[:, :, i, j] * intensity_factor * QLA_P if energy_QL is not None: energy[:, :, i, j] = energy_QL[:, :, i, j] * intensity_factor * QLA_E if toroidal_stress_QL is not None: toroidal_stress[:, :, i, j] = toroidal_stress_QL[:, :, i, j] * intensity_factor * QLA_O if parallel_stress_QL is not None: parallel_stress[:, :, i, j] = parallel_stress_QL[:, :, i, j] * intensity_factor * QLA_O if exchange_QL is not None: exchange[:, :, i, j] = exchange_QL[:, :, i, j] * intensity_factor * QLA_O dky0 = 0 ky0 = 0 for i in range(len(ky_spect)): ky = ky_spect[i] ky1 = ky if i == 0: dky1 = ky1 else: dky = np.log(ky1 / ky0) / (ky1 - ky0) dky1 = ky1 * (1.0 - ky0 * dky) dky0 = ky0 * (ky1 * dky - 1.0) particle_flux_out, energy_flux_out, stress_tor_out, stress_par_out, exchange_out, q_low_out = flux_integrals( NM, NS, NF, i, ky, dky0, dky1, particle, energy, toroidal_stress, parallel_stress, exchange, particle_flux_out, energy_flux_out, stress_tor_out, stress_par_out, exchange_out, q_low_out, ) ky0 = ky1 results = { "particle_flux_integral": particle_flux_out, "energy_flux_integral": energy_flux_out, "toroidal_stresses_integral": stress_tor_out, "parallel_stresses_integral": stress_par_out, "exchange_flux_integral": exchange_out, } return results