try:
# framework is running
from .startup_choice import *
except ImportError as _excp:
# class is imported by itself
if (
'attempted relative import with no known parent package' in str(_excp)
or 'No module named \'omfit_classes\'' in str(_excp)
or "No module named '__main__.startup_choice'" in str(_excp)
):
from startup_choice import *
else:
raise
from omfit_classes.omfit_namelist import OMFITnamelist
from omfit_classes.omfit_ascii import OMFITascii
from omfit_classes.omfit_nc import OMFITnc
from omfit_classes.omfit_mds import OMFITmdsValue, OMFITmds
from omas import ODS, omas_environment
from omfit_classes.omfit_data import Dataset, DataArray
from omfit_classes.sortedDict import OMFITdataset, SortedDict
from omfit_classes.utils_math import atomic_element
from omfit_classes.omfit_ufile import OMFITuFile
from omfit_classes.utils_plot import *
from scipy.interpolate import LinearNDInterpolator, RectBivariateSpline
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends._backend_tk import NavigationToolbar2Tk as NavigationToolbar2
import numpy as np
from scipy import integrate
__all__ = [
'OMFITtranspNamelist',
'OMFITtranspData',
'OMFITtranspMultigraph',
'OMFITplasmastate',
'OMFITtranspOutput',
'check_TRANSP_run',
'wait_TRANSP_run',
'next_available_TRANSP_runid',
'OMFITfbm',
]
_OMFITtranspNamelist_class_attributes = {
'collect_arrays': {'__offset__': 1}, # Collect arrays to access array data consistently within OMFIT
'explicit_arrays': True, # TRANSP requires arrays to have style: ARR(1)
'compress_arrays': False, # TRANSP does not surpport NAMELIST repetitions
'max_array_chars': None, # TRANSP does not support arrays on multiple lines
'separator_arrays': ', ',
'outsideOfNamelistIsComment': False,
'split_arrays': True, # TRANSP requires each namelist row not to exceed 132 characters
'end_token': '&END',
}
[docs]class OMFITtranspNamelist(OMFITnamelist):
r"""
Class used to interface with TRANSP input "namelist"
This is necessary because the TRANSP input namelist is not a default format
(e.g. with the update_time functionality)
:param filename: filename passed to OMFITobject class
:param \**kw: keyword dictionary passed to OMFITobject class
"""
def __init__(self, filename, **kw):
tmp = {}
tmp.update(_OMFITtranspNamelist_class_attributes)
tmp.update(kw)
OMFITnamelist.__init__(
self, filename, **tmp
) # the call to OMFITnamelist.__init__ with **kw takes care of setting up the class attributes
for k in list(_OMFITtranspNamelist_class_attributes.keys()):
if k in self.OMFITproperties and self.OMFITproperties[k] == _OMFITtranspNamelist_class_attributes[k]:
self.OMFITproperties.pop(k, None)
[docs] @dynaLoad
def load(self):
"""
Method used to load the content of the file specified in the .filename attribute
:return: None
"""
with open(self.filename, 'r') as f:
lines = f.readlines()
sections = SortedDict()
sec = 'main'
sections[sec] = []
for line in lines:
line = line.strip('\n')
if re.match(r'^\s*~update_time\s*=\s*[\.0-9]', line):
try:
sec = float(line.split('!')[0].split('=')[1].strip())
sections[sec] = []
except Exception:
pass
else:
sections[sec].append(line)
for sec in list(sections.keys()):
sections[sec] = '\n'.join(sections[sec])
tmp = NamelistFile(
None, input_string=sections[sec], **{attr: getattr(self, attr) for attr in _OMFITtranspNamelist_class_attributes}
)
if sec == 'main':
self.update(tmp)
else:
self[sec] = tmp
[docs] @dynaSave
def save(self):
"""
Method used to save the content of the object to the file specified in the .filename attribute
:return: None
"""
tmp = SortedDict(sorted=True)
for k in list(self.keys()):
if not isinstance(k, str):
tmp[k] = self[k]
del self[k]
super(OMFITnamelist, self).save()
with open(self.filename, 'a') as f:
for k in list(tmp.keys()):
f.write('~update_time = %f\n' % k)
tmp_file = NamelistFile()
tmp_file.update(tmp[k])
tmp_file.save(fp=f)
self[k] = tmp_file
@property
def update_time(self):
"""
This attribute returns a SortedDictionary with the update times elements in the TRANSP namelist
"""
tmp = SortedDict(sorted=True)
for k in sorted(self.keys()):
if not isinstance(k, str):
tmp[k] = self[k]
return tmp
def _checkSetitem(self, key, val):
"""
Allow non-string keys
"""
return key, val
[docs]class OMFITtranspData(SortedDict):
"""
Class for plotting and manipulating TRANSP output MDS and CDF files
"""
def __init__(self, transp_output, data):
"""
Initialize data object from a OMFITmdsValue
:param transp_output: OMFITmds object or OMFITnc object containing transp run
:param data: Output data label
:type data: str
>> OMFIT['NC_d3d']=OMFITnc(filename)
>> OMFITtranspData(OMFIT['NC_d3d'],'Q0')
>> OMFITtranspData(OMFIT['NC_d3d'],'NE')
>>
>> OMFIT['MDS_d3d']=OMFITmds(server='D3D', treename='transp', shot='1551960501')
>> OMFITtranspData(OMFIT['MDS_d3d'],'Q0')
>> OMFITtranspData(OMFIT['MDS_d3d'],'NE')
>>
>> OMFIT['MDS_iter']=OMFITmds(server='transpgrid', treename='transp_iter', shot='201001676')
>> OMFITtranspData(OMFIT['MDS_iter'],'Q0')
>> OMFITtranspData(OMFIT['MDS_iter'],'NE')
"""
# NetCDF
if isinstance(transp_output, OMFITnc):
self['DATA'] = transp_output[data]['data']
self['DIM_OF'] = [
transp_output[transp_output[data]['__dimensions__'][k]]['data'] for k in reversed(list(range(len(self['DATA'].shape))))
]
self['UNITS_DIM_OF'] = [
transp_output[transp_output[data]['__dimensions__'][k]]['units'].strip()
for k in reversed(list(range(len(self['DATA'].shape))))
]
self['UNITS_DIM_OF'] = [re.sub('SECONDS', 's', x) for x in self['UNITS_DIM_OF']]
if len(self['DATA'].shape) == 2:
self['XAXIS'] = transp_output[data]['__dimensions__'][1]
if len(self['DIM_OF'][1].shape) == 1:
self['DIM_OF'] = [self['DIM_OF'][0], np.array([self['DIM_OF'][1]] * self['DIM_OF'][0].shape[1]).T]
self['LABEL'] = transp_output[data]['long_name'].strip() + ' (%s)' % transp_output[data]['units'].strip()
self['RPLABEL'] = transp_output[data]['long_name'].strip()
self['UNITS'] = transp_output[data]['units'].strip()
self['CDF'] = transp_output
# MDSplus
elif isinstance(transp_output, OMFITmds):
# time needs to be treated special since in MDSplus 'TIME' is stored ad TIME1D and TIME2D
if data == 'TIME' and 'TIME' not in transp_output['OUTPUTS']['ONE_D']:
Data = transp_output['OUTPUTS']['ONE_D']['AIMP']
self['DATA'] = Data.dim_of(0)
self['DIM_OF'] = [self['DATA']]
self['UNITS_DIM_OF'] = ['s']
self['LABEL'] = 'Time'
self['RLABEL'] = 'Time'
self['UNITS'] = ['s']
# get all the data
else:
if data in transp_output['OUTPUTS']['ONE_D']:
Data = transp_output['OUTPUTS']['ONE_D'][data]
else:
Data = transp_output['OUTPUTS']['TWO_D'][data]
self['DATA'] = Data.data()
if data == 'TIME' or data in transp_output['OUTPUTS']['ONE_D']:
# this is to handle different ways of storing dim_of information at GA and PPPL
if len(transp_output['OUTPUTS']['ONE_D']['TIME1D']):
time = transp_output['OUTPUTS']['ONE_D']['TIME1D'].data()
else:
time = Data.dim_of(0)
self['DIM_OF'] = [time]
self['UNITS_DIM_OF'] = ['s']
elif data in transp_output['OUTPUTS']['TWO_D']:
self['XAXIS'] = Data['XAXIS'].data()[0].strip()
self['DIM_OF'] = [transp_output['OUTPUTS']['TWO_D'][self['XAXIS']].data()]
self['UNITS_DIM_OF'] = [transp_output['OUTPUTS']['TWO_D'][self['XAXIS']]['UNITS'].data()[0].strip()]
# this is to handle different ways of storing dim_of information at GA and PPPL
if len(transp_output['OUTPUTS']['ONE_D']['TIME1D']):
time = transp_output['OUTPUTS']['ONE_D']['TIME1D'].data()
else:
time = Data.dim_of(1)
self['DIM_OF'].append(np.tile(time, (Data.data().shape[1], 1)).T)
self['UNITS_DIM_OF'].append('s')
# get all the metadata
for k in ['LABEL', 'RPLABEL', 'UNITS']:
self[k] = Data[k].data()[0].strip()
self[k] = re.sub(r' \)', ')', re.sub(' +', ' ', self[k]))
# save knowledge of the tree
self['MDS'] = transp_output
else:
raise ValueError(
'transp_output of class %s is not recognized. Must be either %s or %s' % (transp_output.__class__, OMFITmds, OMFITnc)
)
[docs] def plot(self, axes=None, label='RPLABEL', slice_axis=None, slice_at=[], label_show_slice=True, **kw):
"""
Plot TRANSP data, using default metadata.
If Data is one dimensional, it is plot using the matplotlib plot function.
If 2D, the default is to show the data using View2d. If a slice_axis is defined, the slices
are shown as line plots.
Extra key words are passed to the plot or View2d function used.
:param axes: Axes in which to make the plots.
:type axes: Axes
:param label: Labels the data in the plot. If 'LABEL' or 'RPLABEL' these values are taken from the Data.
:type label: str
:param slice_axis: Slices 2D data along the radial (0) or time (1) axis.
:type slice_axis: int
:param slice_at: Slices made in slice_axis. An empty list plots all available slices.
:type slice_at: np.ndarray
:return: Figure
"""
# don't modify someone's outside options
kw = copy.copy(kw)
# force 1D list of slices
if slice_at is None:
slice_at = []
slice_at = np.array([slice_at]).ravel()
# use metadaat for default labels
if label in ['RPLABEL', 'LABEL']:
if self[label].endswith('(' + self['UNITS'] + ')') or self[label].endswith('(' + self['UNITS'] + ' )'):
label = self[label].strip()
else:
label = self[label] + ' (' + self['UNITS'] + ')'
# make new plot if needed
if axes:
fig = axes.get_figure()
elif 'figure' in kw:
fig = kw['figure']
if fig.axes:
axes = fig.axes[0]
else:
axes = fig.add_subplot(111)
else:
fig = pyplot.gcf()
axes = pyplot.gca()
im_opt = {}
if 'cmap' in kw:
im_opt['cmap'] = kw.pop('cmap')
# 1D data
if len(self['DIM_OF']) == 1:
kw.setdefault('label', label)
axes.plot(self['DIM_OF'][0], self['DATA'], **kw)
axes.set_xlabel('Time $[{:}]$'.format(self['UNITS_DIM_OF'][0]))
# 2D data
elif len(self['DIM_OF']) == 2:
x = self['DIM_OF'][0][0]
t = self['DIM_OF'][1][:, 0]
y = self['DATA']
x0label = '{:} [{:}]'.format(self['XAXIS'], self['UNITS_DIM_OF'][0]).replace('[]', '')
x1label = '{:} [{:}]'.format('Time', self['UNITS_DIM_OF'][1]).replace('[]', '')
# default is interactive data interface
if slice_axis == None:
view = View2d(
self['DATA'].T,
coords=[x, t],
dims=[x0label, x1label],
name='$[' + self['UNITS'] + ']$',
axes=axes,
imag_options=im_opt,
**kw,
)
view.colorbar.set_label(label)
fig, axes = view.fig, view.axm
fig.view = view
# retain plain 2D contour plot option
elif slice_axis < 0:
cs = utils.utils_plot.pcolor2(x, t, self['DATA'], cmap=cmap, **kw)
cr = utils.utils_plot.contour(x, t, y, 21, colors='k')
cb = utils.utils_plot.colorbar(cs, label=label)
axes.set_xlabel(x0label)
axes.set_ylabel(x1label)
# plot 1D slices
else:
# collect slices
if len(slice_at) == 0:
if slice_axis == 1:
yy = y
slice_at = t
else:
yy = y.T
slice_at = x
else:
tmp = RectBivariateSpline(x, t, y.T, kx=min(3, len(x)), ky=min(3, len(t)))
if slice_axis == 0:
yy = [tmp.ev(t * 0 + s, t) for s in slice_at]
elif slice_axis == 1:
yy = [tmp.ev(x, x * 0 + s) for s in slice_at]
xx = [t, x][slice_axis]
xl = [x1label, x0label][slice_axis]
slice_label = [x1label, x0label][slice_axis - 1]
# plot lines
lines = []
for yi in yy:
lines += axes.plot(xx, yi, **kw)
if len(slice_at) == 1:
if label_show_slice:
label += ', {:}={:}'.format(slice_label.split()[0], slice_at[0])
else:
sm = utils_plot.set_linearray(lines, slice_at)
cb = fig.colorbar(sm)
cb.set_label(slice_label)
kw.setdefault('label', label)
axes.lines[-1].set_label(kw['label'])
axes.set_xlabel(xl)
if label and label.upper() != 'tk.NONE':
leg = axes.legend(loc=0)
if leg:
leg.draggable(True)
return fig
[docs]class OMFITtranspMultigraph(SortedDict):
"""
Class for unique manipulation/plotting of TRANSP multigraph mdsValues.
"""
def __init__(self, MDStree, data):
"""
Initialize data object from a `OMFITmdsValue`.
:param MDStree: OMFITmdsTree object
:type MDStree: :class:`omfit_mds`
:param data: Name of multigraph
:type data: str
"""
# get all the data
content = list(map(lambda x: str(x).strip(), MDStree['MULTIGRAPHS'][data]['CONTENT'].data()))
self['CONSIGN'] = np.array(MDStree['MULTIGRAPHS'][data]['CONSIGN'].data())
self['LABEL'] = MDStree['MULTIGRAPHS'][data]['LABEL'].data()[0].strip()
self['CONTENT'] = SortedDict()
for k, s in zip(content, self['CONSIGN']):
self['CONTENT'][k] = OMFITtranspData(MDStree, k)
if np.any(self['CONSIGN'] < 0):
self['CONTENT'][k]['DATA'] *= s
self['CONTENT'][k]['LABEL'] = '{:}*{:}'.format(s, self['CONTENT'][k]['LABEL'])
self['CONTENT'][k]['RPLABEL'] = '{:}*{:}'.format(s, self['CONTENT'][k]['RPLABEL'])
self['DIM_ND'] = len(self['CONTENT'][content[-1]]['DIM_OF'])
[docs] def plot(self, axes=None, label='LABEL', squeeze=None, **kw):
"""
Plot each data object in the multigraph.
:param axes: Axes in which to plot.
:param label: String labeling the data. 'LABEL' or 'RPLABEL' are taken from TRANSP metadata.
:param squeeze: Bool demanding all plots be made on a single figure. Default is True for 1D data.
All other key word arguments are passed to the individual OMFITtranspData plot functions.
"""
# defaults
kw.setdefault('slice_at', [])
kw.setdefault('slice_axis', None)
kw['slice_at'] = np.array([kw['slice_at']]).ravel() # forces 1D
# Single lines or not
if squeeze == None:
if self['DIM_ND'] == 1:
squeeze = True
elif kw['slice_axis'] != None and len(kw['slice_at']) == 1:
squeeze = True
# use metadaat for default labels
if label in ['LABEL']:
label = self[label]
# set up figure(s)
if squeeze:
if not axes:
note, axes = pyplot.subplots()
# make a notebook to organize/collect all the 2D plots
else:
master = tk.Toplevel(OMFITaux['rootGUI'])
if OMFITaux['rootGUI'] is not None and OMFITaux['rootGUI'].globalgetvar('figsOnTop'):
master.transient(OMFITaux['rootGUI'])
master.wm_title(label)
master.geometry("710x710")
note = ttk.Notebook(master)
# plot all content
for k, v in list(self['CONTENT'].items()):
# overplot the 1D quantities
if squeeze:
note = v.plot(axes=axes, label='LABEL', **kw)
# pack 2D viewers into tabs in a common notebook
else:
# add the Tkinter GUI tab
tab = ttk.Frame(note)
note.add(tab, text=k)
note.pack()
# embed the figure
fig = matplotlib.figure.Figure()
canvas = FigureCanvasTkAgg(fig, master=tab)
canvas.draw()
fig.set_canvas(canvas)
canvas.get_tk_widget().pack(side='top', fill='both', expand=1)
# Add standard toolbar to plot
toolbar = NavigationToolbar2(canvas, tab)
toolbar.update()
canvas._tkcanvas.pack(side='top', fill='both', expand=1)
tab.fig = v.plot(figure=fig, **kw)
def update_slices(tab, event=None):
"""Keep all view slices consistent"""
if hasattr(tab.fig, 'view'):
xlim = tab.fig.view.get_vslice_args()
ylim = tab.fig.view.get_hslice_args()
for tid in note.tabs():
t = note.children[tid.split('.')[-1]]
if t != tab and hasattr(t, 'fig') and hasattr(t.fig, 'view'):
view = t.fig.view
view.hslice(*ylim)
view.vslice(*xlim)
tab.update_slices = utils.types.MethodType(update_slices, tab)
tab.bind('<FocusOut>', tab.update_slices)
# extra features
if squeeze:
leg = axes.legend()
leg.draggable(True)
else:
# add summary tab to the Tkinter GUI
if hasattr(tab.fig, 'view'):
tab = ttk.Frame(note)
note.add(tab, text='Summary')
note.pack()
# embed the figure
fig = matplotlib.figure.Figure()
canvas = FigureCanvasTkAgg(fig, master=tab)
canvas.draw()
fig.set_canvas(canvas)
canvas.get_tk_widget().pack(side='top', fill='both', expand=1)
# Add standard toolbar to plot
toolbar = NavigationToolbar2(canvas, tab)
toolbar.update()
canvas._tkcanvas.pack(side='top', fill='both', expand=1)
axx = fig.add_subplot(211)
axy = fig.add_subplot(212)
tab.fig = fig
def update_lines(tab, event=None):
axx, axy = tab.fig.axes[:2]
for a in [axx, axy]:
a.lines.clear()
a.collections.clear()
a.set_prop_cycle('color', pyplot.rcParams['axes.prop_cycle'].by_key()['color'])
for tid in note.tabs():
k = note.tab(tid, 'text')
t = note.children[tid.split('.')[-1]]
if not hasattr(t, 'fig') or not hasattr(t.fig, 'view'):
continue
fig = t.fig
v = fig.view
# re-produce fills
(l,) = axx.plot(v._hslice_xdata, v._hslice_mean, label=k, **v.plot_options)
axx.fill_between(
v._hslice_xdata, v._hslice_mean - v._hslice_std, v._hslice_mean + v._hslice_std, color=l.get_color(), alpha=0.3
)
(l,) = axy.plot(v._vslice_xdata, v._vslice_mean, label=k, **v.plot_options)
axy.fill_between(
v._vslice_xdata, v._vslice_mean - v._vslice_std, v._vslice_mean + v._vslice_std, color=l.get_color(), alpha=0.3
)
# refresh labels
# axx.texts = [axx.text(0.02,0.95,v.axx.texts[0].get_text(),verticalalignment='top',
# transform=axx.transAxes)]
# axy.texts = [axy.text(0.02,0.95,v.axy.texts[0].get_text(),verticalalignment='top',
# transform=axy.transAxes)]
axx.set_xlabel(fig.view.axm.get_xlabel())
axx.set_ylabel(fig.view.axx.get_ylabel())
axy.set_ylabel(fig.view.axy.get_xlabel())
axy.set_xlabel(fig.view.axm.get_ylabel())
axx.autoscale()
axy.autoscale()
lx = axx.legend()
ly = axy.legend()
tab.fig.canvas.draw()
return
tab.update_lines = utils.types.MethodType(update_lines, tab)
tab.bind('<FocusIn>', tab.update_lines)
# resize notebook figures with main window
def set_fig_size(event=None):
master.unbind('<Configure>')
master.update_idletasks()
note.configure(width=master.winfo_width())
note.configure(height=master.winfo_height())
master.bind('<Configure>', set_fig_size)
set_fig_size()
master.bind('<Configure>', set_fig_size)
# allow keys to change tabs
note.enable_traversal()
return note
plot.__doc__ += OMFITtranspData.plot.__doc__
[docs]def check_TRANSP_run(runid, project=None, tunnel=None):
"""
Function that checks the status of a TRANSP run as reported
by the TRANSP MONITOR GRID website: https://w3.pppl.gov/transp/transpgrid_monitor
:param runid: runid to be checked
:param project: project (ie. tokamak) of the runid (optional)
:param tunnel: use SOCKS via specified tunnel
:return: * None if no matching runid/project is found
* tuple with 1) True/None/False if run went ok, run is waiting, run failed
and 2) dictionary with parsed HTML information
"""
socks = {}
if tunnel is not None:
tmp = setup_socks(tunnel, ssh_path=SERVER['localhost'].get('ssh_path', None))
socks['http'] = 'socks5://localhost:' + tmp[2]
socks['https'] = 'socks5://localhost:' + tmp[2]
url = 'https://w3.pppl.gov/cgi-bin/transpgrid_monitor.frames'
data = {'runid': runid}
if project is not None:
data.update({'project': project})
import requests
from urllib3.exceptions import InsecureRequestWarning
with warnings.catch_warnings(record=False) as w:
warnings.filterwarnings("ignore", category=InsecureRequestWarning)
response = requests.get(url, data, proxies=socks, verify=False)
response.raise_for_status()
the_page = response.text
items = ['project', 'owner', 'details', 'status', 'remarks']
parsed = OrderedDict()
for line in the_page.split('\n'):
if np.all([k in line for k in items]):
line = re.sub(' ', '', line)
line = re.sub('''<(?:"[^"]*"['"]*|'[^']*'['"]*|[^'">])+>''', '\n', line)
line = [_f for _f in line.split('\n') if _f]
for entry, value in zip(line[::2], line[1::2]):
parsed.setdefault(entry, '')
parsed[entry] += value
wait = ['submitted', 'active', 'HALT_RQST', 'mdswrite']
ok = ['success', 'Fetched']
bad = ['stopped', 'canceled', 'HALT_FAILED', 'double', 'nopriv', 'suspended']
if np.any([k in ok for k in list(parsed.keys())]):
return True, parsed
elif np.any([k in wait for k in list(parsed.keys())]):
return None, parsed
elif np.any([k in bad for k in list(parsed.keys())]):
return False, parsed
[docs]def wait_TRANSP_run(runid, project=None, t_check=5, verbose=True, tunnel=None):
"""
Function that waits for a TRANSP run to end as reported
by the TRANSP MONITOR GRID website: https://w3.pppl.gov/transp/transpgrid_monitor
:param runid: runid to be checked
:param project: project (ie. tokamak) of the runid (optional)
:param t_check: how often to check (seconds)
:param verbose: print to screen
:param tunnel: use SOCKS via specified tunnel
:return: * None if no matching runid/project is found
* tuple with 1) True/False if run went ok or run failed
and 2) dictionary with parsed HTML information
"""
aborted = tk.BooleanVar()
aborted.set(False)
if OMFITaux['rootGUI'] is not None:
def onAbort():
aborted.set(True)
try:
if OMFITaux['pythonRunWindows'][-1] is None:
raise RuntimeError('--')
top = ttk.Frame(OMFITaux['pythonRunWindows'][-1], borderwidth=2, relief=tk.GROOVE)
top.pack(side=tk.TOP, expand=tk.NO, fill=tk.BOTH, padx=5, pady=5)
except Exception:
top = tk.Toplevel(OMFITx._topGUI(OMFITaux['rootGUI']))
top.transient(OMFITaux['rootGUI'])
top.update_idletasks()
ttk.Label(top, text='TRANSP wait ' + str(runid), wraplength=top.winfo_width()).pack(side=tk.TOP, expand=tk.NO, fill=tk.X)
p = ttk.Progressbar(top, orient=tk.HORIZONTAL, mode='indeterminate')
p.start()
p.pack(padx=5, pady=5, expand=tk.NO, fill=tk.X)
frm = ttk.Frame(top)
ttk.Button(frm, text="Abort", command=onAbort).pack(side=tk.LEFT, expand=tk.NO, fill=tk.X)
frm.pack(side=tk.TOP)
top.update_idletasks()
status = None
old_print = None
t = -1
dt = 0.1
n = 0
while not aborted.get():
if t < 0:
t = t_check
out = check_TRANSP_run(runid, project, tunnel=tunnel)
# if the runid does not appear in the list
# wait 5x the t_check before giving up
if out is None:
if n == 5:
if OMFITaux['rootGUI'] is not None:
top.destroy()
return None
n += 1
# if the runid is listed print only new updates
else:
n = 0
if old_print != repr(out[1]):
if verbose:
print('-' * 5 + ' ' + str(runid) + ' ' + '-' * 5 + ' ' + now())
for k in out[1]:
printi('%s : %s' % (k, out[1][k]))
elif out[0] is not None:
break
old_print = repr(out[1])
sleep(dt)
t = t - dt
if OMFITaux['rootGUI'] is not None:
top.destroy()
if aborted.get():
raise OMFITexception('-- Aborted by user waiting for TRANSP run %s --' % str(runid))
return out
[docs]def next_available_TRANSP_runid(runid, project, increment=1, skiplist=[], server=None):
"""
Function which checks what MDSplus tree entries are available
:param runid: runid to start checking from (included)
:param project: project [e.g. D3D, ITER, NSTX, ...] used to set the MDSplus TRANSP tree and server to be queried
:param increment: positive / negative
:param skiplist: list of runids to skip
:param server: MDSplus TRANSP server to be queried [e.g. 'atlas.gat.com', or 'transpgrid.pppl.gov']
:return: tuple with next available runid (as integer with format shotXXYY) and augmented skiplist
"""
# handle letter in runid
try:
int(runid)
except Exception:
shot = runid[:-3]
letter = runid[-3:-2].upper()
index = runid[-2:]
runid = str(str(shot) + str(ord(letter) - ord('A') + 1) + index)
runid = str(runid)
runid_base = str(runid)[:-2]
# wrap around counting up/down
if increment > 0:
lst = np.mod(int(runid[-2:]) - 1 + np.arange(0, 99), 99) + 1
else:
lst = np.mod(int(runid[-2:]) - 1 - np.arange(0, 99), 99) + 1
# handle MDSplus server/treename
if server == None:
if project in ['D3D', 'DIII-D']:
server = 'atlas.gat.com'
project = 'D3D'
else:
server = 'transpgrid.pppl.gov'
if server == 'atlas.gat.com':
tree = 'transp'
else:
tree = 'transp_' + project.lower()
# look in search for first available spot
list_busy = copy.copy(skiplist)
import MDSplus
for k in lst:
runid = int('%s%02d' % (runid_base, k))
if k in list_busy:
printi('skipping %d' % runid)
continue
printi('testing %d' % runid)
try:
tmp = OMFITmdsValue(server=server, treename=tree, shot=runid, TDI='\\' + tree.upper() + '::TOP.OUTPUTS.ONE_D.AIMP').data()
if tmp is None or isinstance(tmp, np.ndarray):
printw('MDSplus tree exists')
list_busy.append(k)
except Exception as _excp:
printi('Found available MDSplus tree')
return runid, list_busy
raise OMFITexception('No available runid for %s' % runid_base)
[docs]class OMFITplasmastate(OMFITnc):
"""
Class for handling TRANSP netcdf statefile (not to be confused with the time-dependent TRANSP output CDF file)
"""
sources = {
'pe_trans': 'Total power to electrons',
'pi_trans': 'Total power to ions',
'qie': 'Collisional exchange from ions to electrons',
'pbe': 'Beam power to electrons',
'pbi': 'Beam power to ions',
'pbth': 'Thermalization of beam power to ions',
'peech': 'ECH power to electrons',
'pohme': 'Ohmic heating power to electrons',
'pmine': 'Electron heating power by minority ions',
'pmini': 'Ion heating power by minority ions',
'pminth': 'Thermalization of ion heating power by minority ions',
'picth': 'Direct ion heating power by ICRF',
'pfuse': 'Fusion alpha power transferred to electrons',
'pfusi': 'Fusion alpha power transferred to thermal ions',
'pfusth': 'Thermalization of fusion alpha power transferred to thermal ions',
'prad_cy': 'Radiated power: synchrotron',
'prad_br': 'Radiated power: bremsstrahlung',
'prad_li': 'Radiated power: line',
'tq_trans': 'Angular momentum source torque',
'sn_trans': 'Particle source',
}
[docs] def calcQ(self):
"""
:return: fusion gain
"""
auxi = 0
for k in ['pbi', 'picth', 'pmini']:
auxi += np.sum(self[k]['data'])
auxe = 0
for k in ['pbe', 'peech', 'pmine', 'pohme']:
auxe += np.sum(self[k]['data'])
aux = auxe + auxi
fuse = np.sum(self['pfuse']['data'])
fusi = np.sum(self['pfusi']['data'])
fus_alpha = fuse + fusi
fus_neut = (fuse + fusi) * 4
return (fus_neut + fus_alpha) / aux
[docs] def summary_sources(self):
"""
Print summary of integrated sources
"""
for item in sorted(list(self.sources.keys())):
if item.startswith('p'):
print('%s:% 4d MW [%s]' % (item.ljust(10), np.sum(self[item]['data']) / 1e6, self.sources[item]))
if item.startswith('s'):
print('%s:% 4d 1E20/s [%s]' % (item.ljust(10), np.sum(self[item]['data']) / 1e20, self.sources[item]))
if item.startswith('t'):
print('%s:% 4d N*m^2 [%s]' % (item.ljust(10), int(np.sum(self[item]['data'])), self.sources[item]))
[docs] def to_omas(self, ods=None, time_index=0, update=['core_profiles', 'equilibrium', 'core_sources']):
"""
translate TRANSP plasmastate file (output of TRXPL and plasmastate of SWIM) to OMAS data structure
:param ods: input ods to which data is added
:param time_index: time index to which data is added
:update: list of IDS to update from statefile
:return: ODS
"""
from omas import ODS, omas_environment
cocosio = 2 # need to confirm that indeed TRANSP plasmastate is in COCOS 2
if ods is None:
ods = ODS()
# set the shot number
ods['dataset_description.data_entry.pulse'] = self['shot_number']['data']
# ------------------
# Equilibrium
# ------------------
if 'equilibrium' in update:
# set time array
ods.set_time_array('equilibrium.time', time_index, self['t1']['data']) # t0,t1,tfinal,tinit?
# shortcut
eq = ods['equilibrium.time_slice'][time_index]
# define coordinate of input/output quantities
coordsio = {'equilibrium.time_slice.%d.profiles_1d.psi' % time_index: self['psipol']['data']}
# assign data
with omas_environment(ods, cocosio=cocosio, coordsio=coordsio):
eq['global_quantities.magnetic_axis.b_field_tor'] = self['B_axis_vac']['data']
ods.set_time_array('equilibrium.vacuum_toroidal_field.b0', time_index, self['B_axis_vac']['data'])
ods['equilibrium.vacuum_toroidal_field.r0'] = self['R_axis']['data']
eq['global_quantities.magnetic_axis.r'] = self['R_axis']['data']
eq['global_quantities.magnetic_axis.z'] = self['Z_axis']['data']
eq['global_quantities.psi_axis'] = self['psipol']['data'][0]
eq['global_quantities.psi_boundary'] = self['psipol']['data'][-1]
eq['global_quantities.ip'] = self['curt']['data'][-1]
eq['profiles_1d.rho_tor_norm'] = self['rho']['data']
eq['profiles_1d.f'] = self['g_eq']['data']
eq['profiles_1d.pressure'] = self['P_eq']['data']
eq['profiles_1d.f_df_dpsi'] = deriv(self['psipol']['data'], self['g_eq']['data']) * self['g_eq']['data']
eq['profiles_1d.dpressure_dpsi'] = deriv(self['psipol']['data'], self['P_eq']['data'])
eq['profiles_1d.q'] = self['q_eq']['data']
eq['profiles_1d.rho_tor_norm'] = self['rho']['data']
eq['profiles_2d.0.grid_type.index'] = 1
eq['profiles_2d.0.grid.dim1'] = self['R_grid']['data']
eq['profiles_2d.0.grid.dim2'] = self['Z_grid']['data']
eq['profiles_2d.0.psi'] = self['PsiRZ']['data'].T
eq['boundary.outline.r'] = self['R_geo']['data'][:, -1]
eq['boundary.outline.z'] = self['Z_geo']['data'][:, -1]
eq['profiles_1d.elongation'] = self['elong']['data']
eq['profiles_1d.triangularity_upper'] = self['triangU']['data']
eq['profiles_1d.triangularity_lower'] = self['triangL']['data']
# ============WALL
ods['wall.description_2d.0.limiter.type.name'] = 'first_wall'
ods['wall.description_2d.0.limiter.type.index'] = 0
ods['wall.description_2d.0.limiter.type.description'] = 'first wall'
ods['wall.description_2d.0.limiter.unit.0.outline.r'] = self['rlim']['data']
ods['wall.description_2d.0.limiter.unit.0.outline.z'] = self['zlim']['data']
# ------------------
# Core profiles
# ------------------
if 'core_profiles' in update:
# set time array
ods.set_time_array('core_profiles.time', time_index, self['t1']['data']) # t0,t1,tfinal,tinit?
# shortcut
prof1d = ods['core_profiles.profiles_1d.%d' % time_index]
# define coordinate of input/output quantities
coordsio = {
'core_profiles.profiles_1d.%d.grid.rho_tor_norm' % time_index: self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0
}
# assign data
with omas_environment(ods, coordsio=coordsio, cocosio=cocosio):
ods.set_time_array('core_profiles.vacuum_toroidal_field.b0', time_index, self['B_axis_vac']['data'])
ii = -1
fi = -1
bi = -1
mi = -1
for ks, species in enumerate(self['ALL_name']['data']):
species = species.strip()
if species == 'e':
prof1d['electrons.density_thermal'] = self['ns']['data'][ks, :]
prof1d['electrons.temperature'] = self['Ts']['data'][ks, :] * 1e3
else:
ii += 1
if '_fusn' in species:
fi += 1
prof1d['ion'][ii]['label'] = species.replace('_fusn', '')
prof1d['ion'][ii]['density_fast'] = self['nfusi']['data'][fi, :]
prof1d['ion'][ii]['pressure_fast_perpendicular'] = self['eperp_fusi']['data'][fi, :]
prof1d['ion'][ii]['pressure_fast_parallel'] = self['epll_fusi']['data'][fi, :]
elif '_beam' in species:
bi += 1
prof1d['ion'][ii]['label'] = species.replace('_beam', '')
prof1d['ion'][ii]['density_fast'] = self['nbeami']['data'][bi, :]
prof1d['ion'][ii]['pressure_fast_perpendicular'] = self['eperp_beami']['data'][bi, :]
prof1d['ion'][ii]['pressure_fast_parallel'] = self['epll_beami']['data'][bi, :]
elif '_mini' in species:
mi += 1
prof1d['ion'][ii]['label'] = species.replace('_mini', '')
prof1d['ion'][ii]['density_fast'] = self['nmini']['data'][bi, :]
prof1d['ion'][ii]['pressure_fast_perpendicular'] = self['eperp_mini']['data'][bi, :]
prof1d['ion'][ii]['pressure_fast_parallel'] = self['epll_mini']['data'][bi, :]
else:
prof1d['ion'][ii]['label'] = species
prof1d['ion'][ii]['density_thermal'] = self['ns']['data'][ks, :]
prof1d['ion'][ii]['temperature'] = self['Ts']['data'][ks, :] * 1e3
prof1d['ion'][ii]['element'][0]['z_n'] = list(atomic_element(symbol=prof1d['ion'][ii]['label']).values())[0]['Z']
prof1d['ion'][ii]['element'][0]['a'] = list(atomic_element(symbol=prof1d['ion'][ii]['label']).values())[0]['A']
prof1d['ion'][ii]['multiple_states_flag'] = 0
# calculate derived quantites
ods.physics_core_profiles_pressures()
ods.physics_core_profiles_zeff()
# ------------------
# Core sources
# ------------------
if 'core_sources' in update:
# set time array
ods.set_time_array('core_sources.time', time_index, self['t1']['data']) # t0,t1,tfinal,tinit?
def set_source(si, source_name, id_index, source_value, destination):
# define coordinates for all sources
coordsio = {}
coordsio['core_profiles.profiles_1d.%d.grid.rho_tor_norm' % (time_index)] = (
self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0
)
coordsio['core_sources.source.%d.profiles_1d.%d.grid.rho_tor_norm' % (si, time_index)] = (
self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0
)
with omas_environment(ods, coordsio=coordsio, cocosio=cocosio):
ods['core_sources.source.%d.identifier.name' % si] = source_name
ods['core_sources.source.%d.identifier.index' % si] = id_index
source1d = ods['core_sources.source.%d.profiles_1d.%d' % (si, time_index)]
source1d['grid.volume'] = vol
source1d[destination] = source_value
# fluxes are defined between nodes in the grid
# volume is stored at the nodes of the grid
# place volume info on same grid as fluxes
vol = interp1d(self['rho']['data'], self['vol']['data'])(self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0)
# assign data
prof1d['grid.volume'] = vol
volumetric_electron_heating_terms = {'pohme': 7, 'pbe': 2, 'peech': 3, 'pmine': 5, 'pfuse': 6}
volumetric_ion_heating_terms = {'pbi': 2, 'picth': 5, 'pmini': 5, 'pfusi': 6}
volumetric_electron_particles_terms = {'sbsce': 2}
volumetric_momentum_terms = {'tq_trans': 1}
si = -1
# electron energy
for source, id_index in volumetric_electron_heating_terms.items():
if source in self:
si += 1
set_source(si, source, id_index, self[source]['data'], 'electrons.energy')
# ion energy
for source, id_index in volumetric_ion_heating_terms.items():
if source in self:
si += 1
set_source(si, source, id_index, self[source]['data'], 'total_ion_energy')
# particle ???
for source, id_index in volumetric_electron_particles_terms.items():
if source in self:
si += 1
set_source(si, source, id_index, self[source]['data'][0, :], 'electrons.particles')
# momentum ???
for source, id_index in volumetric_momentum_terms.items():
if source in self:
si += 1
set_source(si, source, id_index, self[source]['data'], 'momentum_tor')
return ods
class transp_out_dynamic_quantity(object):
def __init__(self, parent, name):
self.parent = parent
self.name = name
def __call__(self):
return self.parent[self.name]
def __tree_repr__(self):
return self.name, []
[docs]class OMFITtranspOutput(OMFITdataset):
"""
Class for dynamic serving of TRANSP output data from MDS or CDF
"""
def __init__(self, transp_out):
"""
:param transp_out: OMFITnc file, OMFITmds TRANSP tree, or string path to NetCDF file
"""
if isinstance(transp_out, str):
transp_out = OMFITnc(transp_out)
if isinstance(transp_out, OMFITmds):
self.type = 'MDS'
else:
self.type = 'CDF'
self.transp_out = transp_out
self.dynaLoad = True
self._dynamic_keys = []
OMFITdataset.__init__(self)
[docs] @dynaLoad
def load(self):
if self.type == 'MDS':
items = self.transp_out['TRANSP_OUT'].keys()
else:
items = self.transp_out.keys()
items = [item for item in items if not item.startswith('_')]
for item in items:
self._dynamic_keys.append(item)
if 'TIME' not in self._dynamic_keys:
self._dynamic_keys.insert(0, 'TIME')
def __tree_repr__(self):
return self.type, []
@dynaLoad
def __tree_keys__(self):
return np.unique(list(self.variables.keys()) + self._dynamic_keys).tolist()
@dynaLoad
def __getitem__(self, key):
# return items that exist
if key in self:
return OMFITdataset.__getitem__(self, key)
# return virtual items if requested so
elif OMFITaux['virtualKeys'] and key in self._dynamic_keys:
return transp_out_dynamic_quantity(self, key)
# dynamically evaluate quantity
elif key in self._dynamic_keys:
transp_data = OMFITtranspData(self.transp_out, key)
# 0D data
if not len(transp_data['DIM_OF']):
tmp = DataArray(transp_data['DATA'], coords={}, dims=())
# 1D data
elif len(transp_data['DIM_OF']) == 1:
tmp = DataArray(transp_data['DATA'], coords={'TIME': transp_data['DIM_OF'][0]}, dims=('TIME',))
# 2D data
elif len(transp_data['DIM_OF']) == 2:
x = transp_data['DIM_OF'][0][0]
t = transp_data['DIM_OF'][1][:, 0]
y = transp_data['DATA']
tmp = DataArray(transp_data['DATA'], coords={'TIME': t, 'X': x}, dims=('TIME', 'X'))
self[key] = tmp
return OMFITdataset.__getitem__(self, key)
[docs] def to_omas(self):
# this may be of use: https://github.com/transp/transp-imas-translator/blob/master/transp2imas/transp2imas.f90
ods = ODS()
with omas_environment(ods, cocosio=2): # what COCOS is TRANSP using?
ion_species = ['D'] # what is a good way to figure out ion species?
times = self['TIME']
for time_index, time in enumerate(times):
# ion-profiles
for ion_index, ion_species in enumerate(ion_species):
ods['core_profiles.profiles_1d.{time_index}.ion.{ion_index}.temperature'.format(**locals())] = self['TI'][time_index, :]
# electron-profiles
ods['core_profiles.profiles_1d.{time_index}.electrons.density_thermal'.format(**locals())] = self['NE'][time_index, :] * 1e6
ods['core_profiles.profiles_1d.{time_index}.electrons.temperature'.format(**locals())] = self['TE'][time_index, :]
# equilibrium
ods['equilibrium.time_slice.{time_index}.global_quantities.ip'.format(**locals())] = self['PCURC'][time_index]
# wall: for the the time being, we only save limiter info at first time-slice
# hopefully other codes can agree this is reasonable for static walls
if time_index == 0:
ods['wall.description_2d.{time_index}.limiter.type.name'.format(**locals())] = 'first_wall'
ods['wall.description_2d.{time_index}.limiter.type.index'.format(**locals())] = 0
ods['wall.description_2d.{time_index}.limiter.type.description'.format(**locals())] = 'first wall'
ods['wall.description_2d.{time_index}.limiter.unit.0.outline.r'.format(**locals())] = self['RLIM'][time_index, :]
ods['wall.description_2d.{time_index}.limiter.unit.0.outline.z'.format(**locals())] = self['YLIM'][time_index, :]
# set the time
ods['core_profiles.time'] = times
ods['equilibrium.time'] = times
ods['wall.time'] = times[:1]
# set homogeneous time and other things
ods.satisfy_imas_requirements()
return ods
[docs]class OMFITfbm(OMFITnc):
"""
Class for handling NUBEAM FBM distribution function files
"""
[docs] def plot(self, rf=None, zf=None, cartesian=True, fig=None):
"""
Plot distribution function
:param rf: radial location where to show data in velocity space
:param zf: vertical location where to show data in velocity space
:return: figure handle
"""
f = self['F_D_NBI']['data']
energy = self['E_D_NBI']['data']
pitch = self['A_D_NBI']['data']
r2d = self['R2D']['data']
z2d = self['Z2D']['data']
rho = self['X2D']['data']
theta = self['TH2D']['data']
# Find index of our desired (R,Z)
if rf is None or zf is None:
idx = 0
else:
idx = np.argmin(np.sqrt((r2d - rf) ** 2 + np.abs(z2d - zf) ** 2))
# Get beam ion density (#/cm^3)
de = energy[1] - energy[0]
dp = pitch[1] - pitch[0]
bdens = np.sum(f, axis=(1, 2)) * 0.5 * de * dp
# Form regular grid
rr = np.linspace(np.min(r2d), np.max(r2d), 51)
zr = np.linspace(np.min(z2d), np.max(z2d), 51)
bdensr = scipy.interpolate.griddata((r2d, z2d), bdens, (rr[None, :], zr[:, None]), method='cubic')
if fig is None:
fig = pyplot.gcf()
fig.suptitle(
'{}'.format(self['TOKAMAK']['data'])
+ ' {}'.format(self['TRANSP_RUNID']['data'])
+ ' t={0:0.2f}s'.format(float(self['TIME']['data']))
)
ax = pyplot.subplot(1, 2, 1)
con = ax.contourf(rr, zr, bdensr, 11)
ax.contour(rr, zr, bdensr, 11, colors='black')
ax.plot(r2d[idx], z2d[idx], marker='x', color='red')
ax.set_aspect('equal')
ax.set_title(label='Density $(cm^{-3})$')
ax.set_xlabel('R (cm)')
ax.set_ylabel('Z (cm)')
fig.subplots_adjust(left=0.2)
cax = fig.add_axes([0.05, 0.1, 0.03, 0.8])
fig.colorbar(con, cax=cax)
ax = pyplot.subplot(2, 2, 2)
if not cartesian:
t = np.arccos(np.linspace(-1, 1, len(pitch)))
e = energy * 1e-3
E, T = np.meshgrid(e, t)
x = np.cos(T) * E
y = np.sin(T) * E
ax.contourf(x, y, f[idx, :, :], 11)
ax.set_aspect('equal')
ax.set_xlabel('Energy$_\\parallel$ (keV)')
ax.set_ylabel('Energy$_\\perp$ (keV)')
else:
ax.contourf(energy * 1e-3, pitch, f[idx, :, :], 11)
ax.set_ylim(-1, 1)
ax.set_xlabel('Energy (keV)')
ax.set_ylabel('Pitch $V_{||}/V$')
ax.set_title('$f_b(E,\\xi)$' + ' R={0:0.1f}, Z={1:0.1f}'.format(r2d[idx], z2d[idx]))
ax = pyplot.subplot(2, 2, 4)
ax.scatter(rho, bdens * 1e-13, c=theta, alpha=0.25, label='$n_b(\\theta) [10^{19}m^{-3}]$')
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, np.max(bdens) * 1e-13])
ax.set_xlabel('$\\rho$')
ax.legend()
return fig
[docs] def plot_energy_space(self, rmin, rmax, zmin, zmax, emin=0 * 1e3, emax=1000 * 1e3, cartesian=True, ax=None):
"""
Average distribution function over a specified R,Z and plot energy versus pitch
:param rmin: minimum R to average over
:param rmax: maximum R to average over
:param zmin: minimum Z to average over
:param zmax: maximum Z to average over
:param emin: minimum energy to average over
:param emax: maximum energy to average over
:param cartesian: plot in energy/pitch space or E_\\parallel and E_\\perp
:param ax: axes
"""
f = self['F_D_NBI']['data']
R = self['R2D']['data']
Z = self['Z2D']['data']
energy = self['E_D_NBI']['data']
pitch = self['A_D_NBI']['data']
emini = np.argmin(abs(energy - emin))
emaxi = np.argmin(abs(energy - emax))
total_f = np.zeros((f.shape[1], f.shape[2]))
k = 0
for i, r in enumerate(R):
if r <= rmax and r >= rmin:
if Z[i] <= zmax and Z[i] >= zmin:
total_f[:, :] += f[i, :, :]
k += 1
levels = [
np.amin(total_f[:, emini:emaxi] / k),
np.amax(total_f[:, emini:emaxi] / k) / 40,
np.amax(total_f[:, emini:emaxi] / k) / 20,
np.amax(total_f[:, emini:emaxi] / k) / 10,
np.amax(total_f[:, emini:emaxi] / k) / 4,
np.amax(total_f[:, emini:emaxi] / k) / 3,
np.amax(total_f[:, emini:emaxi] / k) / 2,
np.amax(total_f[:, emini:emaxi] / k) / 1.5,
np.amax(total_f[:, emini:emaxi] / k) / 1.25,
np.amax(total_f[:, emini:emaxi] / k) / 1.2,
np.amax(total_f[:, emini:emaxi] / k) / 1.1,
np.amax(total_f[:, emini:emaxi] / k) / 1.05,
np.amax(total_f[:, emini:emaxi] / k),
]
if ax is None:
ax = pyplot.gca()
if not cartesian:
t = np.arccos(np.linspace(-1, 1, len(pitch)))
e = energy[emini:emaxi] * 1e-3
E, T = np.meshgrid(e, t)
x = np.cos(T) * E
y = np.sin(T) * E
ax.contourf(x, y, total_f[:, emini:emaxi] / k, levels=levels)
ax.contour(x, y, total_f[:, emini:emaxi] / k, levels=levels)
ax.set_aspect('equal')
ax.set_xlabel('Energy$_\\parallel$ (keV)')
ax.set_ylabel('Energy$_\\perp$ (keV)')
else:
ax.contourf(energy[emini:emaxi] * 1e-3, pitch, total_f[:, emini:emaxi] / k, levels=levels)
ax.set_ylim(-1, 1)
ax.set_xlim(10, 100)
ax.set_xlabel('Energy (keV)')
ax.set_ylabel('Pitch $V_\\parallel/V$')
ax.set_title(
'D3D $f_b(E,\\xi)$ '
+ ' {0} Rmin={1:0.1f}, Rmax={2:0.1f}, \nZmin={3:0.1f}, Zmax={4:0.1f}, average over {5} points'.format(
self['TRANSP_RUNID']['data'], rmin, rmax, zmin, zmax, k
)
)
return ax
[docs] def to_omas(self, ods=None, time_index=0):
"""
Save NUBEAM distribution function to OMAS
:param ods: input ods to which data is added
:param time_index: time index to which data is added
:return: updated ODS
"""
if ods is None:
ods = ODS()
# shortcut
ggd = ods[f'distributions.distribution[{time_index}].ggd[0]']
# assign grid spaces for different spatial coordinates
for s, (item, name, coordinates_type, norm) in enumerate(
[
('R2D', 'r', 1, 0.01), # r [cm-->m]
('Z2D', 'z', 2, 0.01), # z [cm-->m]
('X2D', 'rho', 12, 1.0), # rho [-]
('TH2D', 'theta', 22, 1.0), # theta [rad]
]
):
# standard or fourier data
ggd[f'grid.space[{s}].geometry_type.index'] = 0 # 0: standard, 1:Fourier
ggd[f'grid.space[{s}].geometry_type.name'] = name + '_pitch_energy'
ggd[f'grid.space[{s}].coordinates_type'] = [coordinates_type, 403, 301]
ggd[f'grid.space[{s}].objects_per_dimension[0].object[0].geometry'] = self[item]['data'] * norm
ggd[f'grid.space[{s}].objects_per_dimension[0].object[1].geometry'] = self['A_D_NBI']['data'] # pitch v_parallel/v [-]
ggd[f'grid.space[{s}].objects_per_dimension[0].object[2].geometry'] = self['E_D_NBI']['data'] * 1e3 # energy [kev --> ev]
# assign the distribution function data itself
ggd[f'expansion[0].grid_subset[0].values'] = self['F_D_NBI']['data'].flatten()
return ods
################################################# Basic Data Manipulation in TRANSP
def vint(d, dvol=None):
"""
Volume integrate a TRANSP OMFITmdsValue object.
Currently only available for objects from the TRANSP tree.
:param d: OMFITtranspData object from the MDSplus TRANSP OUTPUTS.TWO_D tree.
:type d: OMFITtranspData
:param dvol: OMFITtranspData object 'dvol' from the mds TRANSP tree.
If None, will be taken from Data's MDStree.
:type dvol: OMFITtranspData or None
**Example:**
Assuming the root is an OMFIT TRANSP module with a loaded run.
>> mvisc = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'MVISC')
>> tvisc = vint(mvisc)
>> tvisc['DATA'][0,-1] # total viscous torque at first time step in Nm
2.0986965
>> mvisc2 = vder(tvisc)
>> np.all(np.isclose(mvisc2['DATA'][0,:],mvisc['DATA'][0,:]))
True
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = vint(v, dvol)
return dnew
if dvol == None:
if 'DVOL' in d:
dvol = d['DVOL']
elif 'MDS' in d:
dvol = d['MDS']['OUTPUTS']['TWO_D']['DVOL']
else:
dvol = OMFITmdsValue(d.server, d.treename, d.shot, TDI='DVOL')
elif isinstance(dvol, OMFITmdsValue):
dvol = OMFITtranspData(dvol)
# if type(d)==OMFITmdsValue:
# d = OMFITtranspData(d)
dvol = set_grid(dvol, 'X') # just in case it was changed and given
dint = set_grid(d, 'XB')
ddv = set_grid(d, 'X')['DATA'] * dvol['DATA']
dint['DATA'] = np.cumsum(ddv, axis=1)
# clean up metadata
dint['LABEL'] = 'int({:},dV)'.format(dint['LABEL'])
dint['RPLABEL'] = dint['RPLABEL'].replace('DENSITY', '')
dint['UNITS'] = dint['UNITS'] + '*CM**3'
dint['UNITS'] = dint['UNITS'].replace('/CM3*CM**3', '') # TRANSP conventions
dint['UNITS'] = dint['UNITS'].replace('/Cm3*CM**3', '') # TRANSP conventions
dint['UNITS'] = dint['UNITS'].replace('/CM3/SEC*CM**3', '/SEC') # TRANSP conventions
return dint
OMFITtranspData.vint = vint
OMFITtranspMultigraph.vint = vint
def vder(d, dvol=None):
"""
Derivative with respect to volume for TRANSP variables consistent with
TRANSP finite differencing methods.
See Solomon's unvolint.pro
:param d: OMFITtranspData object from the MDSplus TRANSP tree.
:type d: OMFITtranspData
:param dvol: OMFITtranspData object 'dvol' from the mds TRANSP tree.
If None, will be taken from the Data's MDStree.
:type dvol: OMFITtranspData or None
:return: dy/dV OMFITtransData object on zone-centered grid.
**Example:**
Assuming the root is an OMFIT TRANSP module with a loaded run.
>> mvisc = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'MVISC')
>> tvisc = vint(mvisc)
>> tvisc['DATA'][0,-1] # total viscous torque at first time step in Nm
2.0986965
>> mvisc2 = vder(tvisc)
>> np.all(np.isclose(mvisc2['DATA'][0,:],mvisc['DATA'][0,:]))
True
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = vder(v, dvol)
return dnew
if dvol == None:
dvol = d['DVOL']
elif isinstance(dvol, OMFITmdsValue):
dvol = OMFITtranspData(dvol)
if isinstance(d, OMFITmdsValue):
d = OMFITtranspData(d)
dvol = set_grid(dvol, 'X') # just in case it was changed and given
dder = set_grid(d, 'X')
y = set_grid(d, 'XB')['DATA']
y = np.hstack([np.zeros([len(dder['DIM_OF'][1]), 1]), y])
dder['DATA'] = np.diff(y, axis=1) / dvol['DATA']
# clean up metadata
dder['LABEL'] = 'd{:}/dV)'.format(dder['LABEL'])
dder['UNITS'] = dder['UNITS'] + '/CM**3'
dder['UNITS'] = dder['UNITS'].replace('CM3/CM**3', '') # TRANSP conventions
dder['UNITS'] = dder['UNITS'].replace('Cm3/CM**3', '') # TRANSP conventions
return dder
OMFITtranspData.vder = vder
OMFITtranspMultigraph.vder = vder
def sint(d, darea=None):
"""
Surface integrate a TRANSP OMFITmdsValue object.
Currently only available for objects from the TRANSP tree.
:param d: OMFITtranspData object from the MDSplus TRANSP OUTPUTS.TWO_D tree.
:type d: OMFITtranspData
:param darea: OMFITtranspData object 'darea' from the mds TRANSP tree.
If None, will be taken from Data's MDStree.
:type darea: OMFITtranspData or None
**Example:**
mds = OMFITmds('DIII-D','transp',1633030101)
cur = OMFITtranspData(mds,'CUR')
da = OMFITtranspData(mds,'DAREA')
curi = cur.sint(darea=da)
print(curi['DATA'][0,-1])
pcur = OMFITtranspData(mds,'PCUR')
print(pcur['DATA'][0])
-> 1.16626e+06
-> 1.16626e+06
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = sint(v, darea)
return dnew
if darea == None:
if 'DAREA' in d:
darea = d['DAREA']
elif 'MDS' in d:
darea = d['MDS']['OUTPUTS']['TWO_D']['DAREA']
else:
darea = OMFITmdsValue(d.server, d.treename, d.shot, TDI='DAREA')
elif isinstance(darea, OMFITmdsValue):
darea = OMFITtranspData(darea)
# if type(d)==OMFITmdsValue:
# d = OMFITtranspData(d)
darea = set_grid(darea, 'X') # just in case it was changed and given
dint = set_grid(d, 'XB')
dda = set_grid(d, 'X')['DATA'] * darea['DATA']
dint['DATA'] = np.cumsum(dda, axis=1)
# clean up metadata
dint['LABEL'] = 'int({:},dA)'.format(dint['LABEL'])
dint['RPLABEL'] = dint['RPLABEL'].replace('DENSITY', '')
dint['UNITS'] = dint['UNITS'] + '*CM**2'
dint['UNITS'] = dint['UNITS'].replace('/CM2*CM**2', '') # TRANSP conventions
dint['UNITS'] = dint['UNITS'].replace('/Cm2*CM**2', '') # TRANSP conventions
return dint
OMFITtranspData.sint = sint
OMFITtranspMultigraph.sint = sint
def set_grid(d, zone='X', dvol=None):
"""
Interpolate 2D TRANSP data to rho grid zone-boundary or zone-centered values.
:param d: OMFITtranspData object from the MDSplus TRANSP tree.
:param zone: ``'XB'`` for zone-boundary rho, ``'X'`` for zone-centered. ``'V'`` or ``'VB'`` for volume.
:type zone: str
:param dvol: OMFITtranspData object 'dvol' from the MDSplus TRANSP tree.
If None, will be taken from Data's MDStree.
return: OMFITtranspData object on the specified rho grid
**Example:**
Assuming the root is an OMFIT TRANSP module with a loaded run.
>> mvisc = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'MVISC')
>> mvisc['XAXIS']
'X'
>> print(mvisc['DIM_OF'][0][:3])
[ 0.01 0.03 0.05]
>> mviscb = set_grid(mvisc,'XB')
>> mviscb['XAXIS']
'XB'
>> print(mviscb['DIM_OF'][0][:3])
[ 0.02 0.04 0.06]
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = set_grid(v, zone, dvol)
return dnew
if dvol == None and 'V' in zone:
dvol = d['DVOL']
elif isinstance(dvol, OMFITmdsValue):
dvol = OMFITtranspData(dvol)
if isinstance(d, OMFITmdsValue):
d = OMFITtranspData(d)
zone = zone.upper()
db = copy.copy(d)
# return a copy if no change
if d['XAXIS'] == zone:
return db
# native transp rho grid center or boundary
if zone in ['X', 'XB']:
if 'MDS' in d:
xnew = d['MDS']['TRANSP_OUT'][zone].data()
else:
xnew = d['CDF'][zone]['data']
y = d['DATA'] # .ravel()
x = d['DIM_OF'][0][0, :] # .ravel()
t = d['DIM_OF'][1][:, 0] # .ravel()
# f = LinearNDInterpolator(zip(x,t),y)
# db['DATA'] = f(zip(xnew.ravel(),t.ravel())).reshape(t.shape)
f = RectBivariateSpline(x, t, y.T) # assume regular grid
db['DATA'] = f(xnew[0, :], t).T
db['DIM_OF'][0] = xnew
# volume grid center or boundary for easy integration of densities
elif zone in ['V', 'VB']:
db = set_grid(d, zone.replace('V', 'X'))
v = set_grid(xint(dvol), zone.replace('V', 'X'))
db['DIM_OF'][0] = v['DATA']
else:
raise ValueError('Valid zones are "X", "XB", "V", or "VB".')
db['XAXIS'] = zone
return db
OMFITtranspData.set_grid = set_grid
OMFITtranspMultigraph.set_grid = set_grid
def xdiff(d):
"""
TRANSP convention of simple finite difference along rho (axis=0), including
switching of centered/boundary grids.
:param d: OMFITtranspData object from the MDSplus TRANSP tree.
:return: OMFITtranspData differenced on the other rho grid (``'X'`` vs ``'XB'``)
**Example:**
>> x = Data(['x','TRANSP'],1470670204)
>> dx = xdiff(x)
>> print(dx['XAXIS'])
XB
>> print(dx.y[0,:3])
[ 0.02 0.02 0.02]
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = xdiff(v)
return dnew
ddiff = copy.copy(d)
# extend axis by 1 (back of forward)
tn = list(d['DIM_OF'][1].T)
tn.insert(0, d['DIM_OF'][1][:, 0])
xn = list(d['DIM_OF'][0].T)
if d['XAXIS'] == 'X':
xn.insert(len(xn), xn[-1] + (xn[-1] - xn[-2]))
ddiff = set_grid(ddiff, 'XB')
elif d['XAXIS'] == 'XB':
xn.insert(0, xn[0] - (xn[1] - xn[0]))
ddiff = set_grid(ddiff, 'X')
else:
raise ValueError('Data object must have xaxis attribute "X" or "XB"')
# data on extended axis
y = d['DATA'].ravel()
x = d['DIM_OF'][0].ravel()
t = d['DIM_OF'][1].ravel()
fl = LinearNDInterpolator(list(zip(x, t)), y)
fn = NearestNDInterpolator(list(zip(x, t)), y)
dn = fl(list(zip(np.array(xn).ravel(), np.array(tn).ravel()))).reshape(np.shape(xn))
dn[np.isnan(dn)] = fn(list(zip(np.array(xn)[np.isnan(dn)].ravel(), np.array(tn)[np.isnan(dn)].ravel())))
# simple finite differences
dy = np.diff(dn, axis=0).T
# new data
ddiff['DATA'] = dy
# clean up metadata
ddiff['LABEL'] = 'd({:})'.format(d['LABEL'])
ddiff['RPLABEL'] = 'Delta {:})'.format(d['RPLABEL'])
return ddiff
OMFITtranspData.xdiff = xdiff
OMFITtranspMultigraph.xdiff = xdiff
def xder(d):
"""
TRANSP style differentiation in rho.
:param d: OMFITtranspData object from the TRANSP tree.
:return: dy/drho OMFITtranspData object on the other rho grid.
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = xder(v)
return dnew
dx = xdiff(OMFITtranspData(d['MDS'], d['XAXIS']))
dder = xdiff(d)
dder['DATA'] /= dx['DATA']
# clean up metadata
dder['LABEL'] = '{:}/drho'.format(dder['LABEL'])
return dder
OMFITtranspData.xder = xder
OMFITtranspMultigraph.xder = xder
def xint(d):
"""
TRANSP style integration in rho. UNVALIDATED.
:param d: OMFITtranspData object from the TRANSP tree.
:return: dy/drho OMFITtranspData object on the other rho grid.
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = xint(v)
return dnew
dint = copy.copy(d)
dint['DATA'] = integrate.cumtrapz(dint['DATA'], x=dint['DIM_OF'][0], axis=1, initial=0)
# clean up metadata
dint['LABEL'] = 'int({:},drho)'.format(dint['LABEL'])
return dint
OMFITtranspData.xint = xint
OMFITtranspMultigraph.xint = xint
def aol(d, rmnmp=None):
"""
Normalized inverse scale length a/Lx with derivative with respect to
midplane minor radius "r". The equation is aol = -(a/X)dX/dr
:param d: OMFITtranspData object from the TRANSP tree.
:param rmnmp: OMFITtranspData "RMNMP"
:return:
"""
if isinstance(d, OMFITtranspMultigraph):
dnew = copy.copy(d)
for k, v in list(dnew['CONTENT'].items()):
dnew['CONTENT'][k] = aol(v, rmnmp)
return dnew
if rmnmp == None:
if 'RMNMP' in d:
rmnmp = d['RMNMP']
elif 'MDS' in d:
rmnmp = d['MDS']['OUTPUTS']['TWO_D']['RMNMP']
else:
rmnmp = OMFITmdsValue(d.server, d.treename, d.shot, TDI='RMNMP')
elif isinstance(rmnmp, OMFITmdsValue):
rmnmp = OMFITtranspData(rmnmp)
a = rmnmp['DATA'][:, -1]
dr = np.zeros(d['DATA'].shape)
for i in range(d['DATA'].shape[0]):
dr[i, :] = deriv(rmnmp['DATA'][i, :], d['DATA'][i, :])
dder = copy.copy(d)
dder['DATA'] = -1.0 * (a[:, np.newaxis] / d['DATA']) * dr
# clean up metadata
dder['LABEL'] = 'a/L_{:})'.format(dder['LABEL'])
dder['UNITS'] = '-'
return dder
OMFITtranspData.aol = aol
OMFITtranspMultigraph.aol = aol
def tavg(d, time=None, avgtime=None):
"""
Time average data
:param d: OMFITtranspData object from the TRANSP tree.
:param time: Center time in seconds
:param avgtime: Averaging window (+/-) in seconds
:return: For 1D input uncertainty uarray of the data time avarge and standard deviation.
For 2D input uncertainty uarray of the profile with time avarge and standard deviation.
**Example:**
Assuming data in root['OUTPUTS']['TRANSP_OUTPUT']
time = 2.0
avgtime = 0.1
# 1D
tr_neutt = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'], 'NEUTT')
tr_neutt_tavg = tr_neutt.tavg(time=time, avgtime=avgtime)
tr_neutt.plot()
ax = gca()
uband([time-avgtime, time+avgtime],np.repeat(tr_neutt_tavg,2),ax=ax)
ax.text(time,nominal_values(tr_neutt_tavg)+std_devs(tr_neutt_tavg),
'{0:0.3g}+/-{1:0.3g}'.format(nominal_values(tr_neutt_tavg),std_devs(tr_neutt_tavg)))
# 2D
tr_ne = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'NE')
tr_ne_tavg = tr_ne.tavg(time=time, avgtime=avgtime)
figure()
tr_ne.plot(slice_axis=1,slice_at=time)
ax = gca()
uband(tr_ne['DIM_OF'][0][0,:],tr_ne_tavg,ax=ax)
"""
if time is None or avgtime is None:
raise (OMFITexception("Must set time and average time"))
# Determine if 1D or 2D data
if len(d['DIM_OF']) == 1 and d['UNITS_DIM_OF'][0] == 's':
# 1D
idx = np.where((d['DIM_OF'][0] >= time - avgtime) * (d['DIM_OF'][0] <= time + avgtime))[0]
if len(idx):
ud = uarray(np.mean(d['DATA'][idx]), np.std(d['DATA'][idx]))
else:
raise (OMFITexception("Averaging window empty."))
elif len(d['DIM_OF']) == 2 and d['UNITS_DIM_OF'][1] == 's':
# 2D
idx = np.where((d['DIM_OF'][1][:, 0] >= time - avgtime) * (d['DIM_OF'][1][:, 0] <= time + avgtime))[0]
if len(idx):
ud = uarray(np.mean(d['DATA'][idx, :], axis=0), np.std(d['DATA'][idx, :], axis=0))
else:
raise (OMFITexception("Averaging window empty."))
else:
raise (OMFITexception("Unrecognized dimensions of quantity to average."))
return ud
OMFITtranspData.tavg = tavg
############################################
if '__main__' == __name__:
test_classes_main_header()
# This is not a real TRANSP output file, but the class should be able to finish __init__() with any .nc sample.
# This is just a limited initialization test, not a detailed test of all class features.
test_nc_file = os.sep.join([OMFITsrc, '..', 'samples', 'bmn.nc'])
class_instance = OMFITtranspOutput(test_nc_file)
class_instance.load()