Source code for omfit_classes.omfit_transp

try:
    # framework is running
    from .startup_choice import *
except ImportError as _excp:
    # class is imported by itself
    if (
        'attempted relative import with no known parent package' in str(_excp)
        or 'No module named \'omfit_classes\'' in str(_excp)
        or "No module named '__main__.startup_choice'" in str(_excp)
    ):
        from startup_choice import *
    else:
        raise

from omfit_classes.omfit_namelist import OMFITnamelist
from omfit_classes.omfit_ascii import OMFITascii
from omfit_classes.omfit_nc import OMFITnc
from omfit_classes.omfit_mds import OMFITmdsValue, OMFITmds
from omas import ODS, omas_environment
from omfit_classes.omfit_data import Dataset, DataArray
from omfit_classes.sortedDict import OMFITdataset, SortedDict
from omfit_classes.utils_math import atomic_element
from omfit_classes.omfit_ufile import OMFITuFile
from omfit_classes.utils_plot import *

from scipy.interpolate import LinearNDInterpolator, RectBivariateSpline
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.backends._backend_tk import NavigationToolbar2Tk as NavigationToolbar2
import numpy as np
from scipy import integrate

__all__ = [
    'OMFITtranspNamelist',
    'OMFITtranspData',
    'OMFITtranspMultigraph',
    'OMFITplasmastate',
    'OMFITtranspOutput',
    'check_TRANSP_run',
    'wait_TRANSP_run',
    'next_available_TRANSP_runid',
    'OMFITfbm',
]

_OMFITtranspNamelist_class_attributes = {
    'collect_arrays': {'__offset__': 1},  # Collect arrays to access array data consistently within OMFIT
    'explicit_arrays': True,  # TRANSP requires arrays to have style: ARR(1)
    'compress_arrays': False,  # TRANSP does not surpport NAMELIST repetitions
    'max_array_chars': None,  # TRANSP does not support arrays on multiple lines
    'separator_arrays': ', ',
    'outsideOfNamelistIsComment': False,
    'split_arrays': True,  # TRANSP requires each namelist row not to exceed 132 characters
    'end_token': '&END',
}


[docs]class OMFITtranspNamelist(OMFITnamelist): r""" Class used to interface with TRANSP input "namelist" This is necessary because the TRANSP input namelist is not a default format (e.g. with the update_time functionality) :param filename: filename passed to OMFITobject class :param \**kw: keyword dictionary passed to OMFITobject class """ def __init__(self, filename, **kw): tmp = {} tmp.update(_OMFITtranspNamelist_class_attributes) tmp.update(kw) OMFITnamelist.__init__( self, filename, **tmp ) # the call to OMFITnamelist.__init__ with **kw takes care of setting up the class attributes for k in list(_OMFITtranspNamelist_class_attributes.keys()): if k in self.OMFITproperties and self.OMFITproperties[k] == _OMFITtranspNamelist_class_attributes[k]: self.OMFITproperties.pop(k, None)
[docs] @dynaLoad def load(self): """ Method used to load the content of the file specified in the .filename attribute :return: None """ with open(self.filename, 'r') as f: lines = f.readlines() sections = SortedDict() sec = 'main' sections[sec] = [] for line in lines: line = line.strip('\n') if re.match(r'^\s*~update_time\s*=\s*[\.0-9]', line): try: sec = float(line.split('!')[0].split('=')[1].strip()) sections[sec] = [] except Exception: pass else: sections[sec].append(line) for sec in list(sections.keys()): sections[sec] = '\n'.join(sections[sec]) tmp = NamelistFile( None, input_string=sections[sec], **{attr: getattr(self, attr) for attr in _OMFITtranspNamelist_class_attributes} ) if sec == 'main': self.update(tmp) else: self[sec] = tmp
[docs] @dynaSave def save(self): """ Method used to save the content of the object to the file specified in the .filename attribute :return: None """ tmp = SortedDict(sorted=True) for k in list(self.keys()): if not isinstance(k, str): tmp[k] = self[k] del self[k] super(OMFITnamelist, self).save() with open(self.filename, 'a') as f: for k in list(tmp.keys()): f.write('~update_time = %f\n' % k) tmp_file = NamelistFile() tmp_file.update(tmp[k]) tmp_file.save(fp=f) self[k] = tmp_file
@property def update_time(self): """ This attribute returns a SortedDictionary with the update times elements in the TRANSP namelist """ tmp = SortedDict(sorted=True) for k in sorted(self.keys()): if not isinstance(k, str): tmp[k] = self[k] return tmp def _checkSetitem(self, key, val): """ Allow non-string keys """ return key, val
[docs]class OMFITtranspData(SortedDict): """ Class for plotting and manipulating TRANSP output MDS and CDF files """ def __init__(self, transp_output, data): """ Initialize data object from a OMFITmdsValue :param transp_output: OMFITmds object or OMFITnc object containing transp run :param data: Output data label :type data: str >> OMFIT['NC_d3d']=OMFITnc(filename) >> OMFITtranspData(OMFIT['NC_d3d'],'Q0') >> OMFITtranspData(OMFIT['NC_d3d'],'NE') >> >> OMFIT['MDS_d3d']=OMFITmds(server='D3D', treename='transp', shot='1551960501') >> OMFITtranspData(OMFIT['MDS_d3d'],'Q0') >> OMFITtranspData(OMFIT['MDS_d3d'],'NE') >> >> OMFIT['MDS_iter']=OMFITmds(server='transpgrid', treename='transp_iter', shot='201001676') >> OMFITtranspData(OMFIT['MDS_iter'],'Q0') >> OMFITtranspData(OMFIT['MDS_iter'],'NE') """ # NetCDF if isinstance(transp_output, OMFITnc): self['DATA'] = transp_output[data]['data'] self['DIM_OF'] = [ transp_output[transp_output[data]['__dimensions__'][k]]['data'] for k in reversed(list(range(len(self['DATA'].shape)))) ] self['UNITS_DIM_OF'] = [ transp_output[transp_output[data]['__dimensions__'][k]]['units'].strip() for k in reversed(list(range(len(self['DATA'].shape)))) ] self['UNITS_DIM_OF'] = [re.sub('SECONDS', 's', x) for x in self['UNITS_DIM_OF']] if len(self['DATA'].shape) == 2: self['XAXIS'] = transp_output[data]['__dimensions__'][1] if len(self['DIM_OF'][1].shape) == 1: self['DIM_OF'] = [self['DIM_OF'][0], np.array([self['DIM_OF'][1]] * self['DIM_OF'][0].shape[1]).T] self['LABEL'] = transp_output[data]['long_name'].strip() + ' (%s)' % transp_output[data]['units'].strip() self['RPLABEL'] = transp_output[data]['long_name'].strip() self['UNITS'] = transp_output[data]['units'].strip() self['CDF'] = transp_output # MDS+ elif isinstance(transp_output, OMFITmds): # time needs to be treated special since in MDS+ 'TIME' is stored ad TIME1D and TIME2D if data == 'TIME' and 'TIME' not in transp_output['OUTPUTS']['ONE_D']: Data = transp_output['OUTPUTS']['ONE_D']['AIMP'] self['DATA'] = Data.dim_of(0) self['DIM_OF'] = [self['DATA']] self['UNITS_DIM_OF'] = ['s'] self['LABEL'] = 'Time' self['RLABEL'] = 'Time' self['UNITS'] = ['s'] # get all the data else: if data in transp_output['OUTPUTS']['ONE_D']: Data = transp_output['OUTPUTS']['ONE_D'][data] else: Data = transp_output['OUTPUTS']['TWO_D'][data] self['DATA'] = Data.data() if data == 'TIME' or data in transp_output['OUTPUTS']['ONE_D']: # this is to handle different ways of storing dim_of information at GA and PPPL if len(transp_output['OUTPUTS']['ONE_D']['TIME1D']): time = transp_output['OUTPUTS']['ONE_D']['TIME1D'].data() else: time = Data.dim_of(0) self['DIM_OF'] = [time] self['UNITS_DIM_OF'] = ['s'] elif data in transp_output['OUTPUTS']['TWO_D']: self['XAXIS'] = Data['XAXIS'].data()[0].strip() self['DIM_OF'] = [transp_output['OUTPUTS']['TWO_D'][self['XAXIS']].data()] self['UNITS_DIM_OF'] = [transp_output['OUTPUTS']['TWO_D'][self['XAXIS']]['UNITS'].data()[0].strip()] # this is to handle different ways of storing dim_of information at GA and PPPL if len(transp_output['OUTPUTS']['ONE_D']['TIME1D']): time = transp_output['OUTPUTS']['ONE_D']['TIME1D'].data() else: time = Data.dim_of(1) self['DIM_OF'].append(np.tile(time, (Data.data().shape[1], 1)).T) self['UNITS_DIM_OF'].append('s') # get all the metadata for k in ['LABEL', 'RPLABEL', 'UNITS']: self[k] = Data[k].data()[0].strip() self[k] = re.sub(r' \)', ')', re.sub(' +', ' ', self[k])) # save knowledge of the tree self['MDS'] = transp_output else: raise ValueError( 'transp_output of class %s is not recognized. Must be either %s or %s' % (transp_output.__class__, OMFITmds, OMFITnc) )
[docs] def plot(self, axes=None, label='RPLABEL', slice_axis=None, slice_at=[], label_show_slice=True, **kw): """ Plot TRANSP data, using default metadata. If Data is one dimensional, it is plot using the matplotlib plot function. If 2D, the default is to show the data using View2d. If a slice_axis is defined, the slices are shown as line plots. Extra key words are passed to the plot or View2d function used. :param axes: Axes in which to make the plots. :type axes: Axes :param label: Labels the data in the plot. If 'LABEL' or 'RPLABEL' these values are taken from the Data. :type label: str :param slice_axis: Slices 2D data along the radial (0) or time (1) axis. :type slice_axis: int :param slice_at: Slices made in slice_axis. An empty list plots all available slices. :type slice_at: np.ndarray :return: Figure """ # don't modify someone's outside options kw = copy.copy(kw) # force 1D list of slices if slice_at is None: slice_at = [] slice_at = np.array([slice_at]).ravel() # use metadaat for default labels if label in ['RPLABEL', 'LABEL']: if self[label].endswith('(' + self['UNITS'] + ')') or self[label].endswith('(' + self['UNITS'] + ' )'): label = self[label].strip() else: label = self[label] + ' (' + self['UNITS'] + ')' # make new plot if needed if axes: fig = axes.get_figure() elif 'figure' in kw: fig = kw['figure'] if fig.axes: axes = fig.axes[0] else: axes = fig.add_subplot(111) else: fig = pyplot.gcf() axes = pyplot.gca() im_opt = {} if 'cmap' in kw: im_opt['cmap'] = kw.pop('cmap') # 1D data if len(self['DIM_OF']) == 1: kw.setdefault('label', label) axes.plot(self['DIM_OF'][0], self['DATA'], **kw) axes.set_xlabel('Time $[{:}]$'.format(self['UNITS_DIM_OF'][0])) # 2D data elif len(self['DIM_OF']) == 2: x = self['DIM_OF'][0][0] t = self['DIM_OF'][1][:, 0] y = self['DATA'] x0label = '{:} [{:}]'.format(self['XAXIS'], self['UNITS_DIM_OF'][0]).replace('[]', '') x1label = '{:} [{:}]'.format('Time', self['UNITS_DIM_OF'][1]).replace('[]', '') # default is interactive data interface if slice_axis == None: view = View2d( self['DATA'].T, coords=[x, t], dims=[x0label, x1label], name='$[' + self['UNITS'] + ']$', axes=axes, imag_options=im_opt, **kw, ) view.colorbar.set_label(label) fig, axes = view.fig, view.axm fig.view = view # retain plain 2D contour plot option elif slice_axis < 0: cs = utils.utils_plot.pcolor2(x, t, self['DATA'], cmap=cmap, **kw) cr = utils.utils_plot.contour(x, t, y, 21, colors='k') cb = utils.utils_plot.colorbar(cs, label=label) axes.set_xlabel(x0label) axes.set_ylabel(x1label) # plot 1D slices else: # collect slices if len(slice_at) == 0: if slice_axis == 1: yy = y slice_at = t else: yy = y.T slice_at = x else: tmp = RectBivariateSpline(x, t, y.T, kx=min(3, len(x)), ky=min(3, len(t))) if slice_axis == 0: yy = [tmp.ev(t * 0 + s, t) for s in slice_at] elif slice_axis == 1: yy = [tmp.ev(x, x * 0 + s) for s in slice_at] xx = [t, x][slice_axis] xl = [x1label, x0label][slice_axis] slice_label = [x1label, x0label][slice_axis - 1] # plot lines lines = [] for yi in yy: lines += axes.plot(xx, yi, **kw) if len(slice_at) == 1: if label_show_slice: label += ', {:}={:}'.format(slice_label.split()[0], slice_at[0]) else: sm = utils_plot.set_linearray(lines, slice_at) cb = fig.colorbar(sm) cb.set_label(slice_label) kw.setdefault('label', label) axes.lines[-1].set_label(kw['label']) axes.set_xlabel(xl) if label and label.upper() != 'tk.NONE': leg = axes.legend(loc=0) if leg: leg.draggable(True) return fig
[docs]class OMFITtranspMultigraph(SortedDict): """ Class for unique manipulation/plotting of TRANSP multigraph mdsValues. """ def __init__(self, MDStree, data): """ Initialize data object from a `OMFITmdsValue`. :param MDStree: OMFITmdsTree object :type MDStree: :class:`omfit_mds` :param data: Name of multigraph :type data: str """ # get all the data content = list(map(lambda x: str(x).strip(), MDStree['MULTIGRAPHS'][data]['CONTENT'].data())) self['CONSIGN'] = np.array(MDStree['MULTIGRAPHS'][data]['CONSIGN'].data()) self['LABEL'] = MDStree['MULTIGRAPHS'][data]['LABEL'].data()[0].strip() self['CONTENT'] = SortedDict() for k, s in zip(content, self['CONSIGN']): self['CONTENT'][k] = OMFITtranspData(MDStree, k) if np.any(self['CONSIGN'] < 0): self['CONTENT'][k]['DATA'] *= s self['CONTENT'][k]['LABEL'] = '{:}*{:}'.format(s, self['CONTENT'][k]['LABEL']) self['CONTENT'][k]['RPLABEL'] = '{:}*{:}'.format(s, self['CONTENT'][k]['RPLABEL']) self['DIM_ND'] = len(self['CONTENT'][content[-1]]['DIM_OF'])
[docs] def plot(self, axes=None, label='LABEL', squeeze=None, **kw): """ Plot each data object in the multigraph. :param axes: Axes in which to plot. :param label: String labeling the data. 'LABEL' or 'RPLABEL' are taken from TRANSP metadata. :param squeeze: Bool demanding all plots be made on a single figure. Default is True for 1D data. All other key word arguments are passed to the individual OMFITtranspData plot functions. """ # defaults kw.setdefault('slice_at', []) kw.setdefault('slice_axis', None) kw['slice_at'] = np.array([kw['slice_at']]).ravel() # forces 1D # Single lines or not if squeeze == None: if self['DIM_ND'] == 1: squeeze = True elif kw['slice_axis'] != None and len(kw['slice_at']) == 1: squeeze = True # use metadaat for default labels if label in ['LABEL']: label = self[label] # set up figure(s) if squeeze: if not axes: note, axes = pyplot.subplots() # make a notebook to organize/collect all the 2D plots else: master = tk.Toplevel(OMFITaux['rootGUI']) if OMFITaux['rootGUI'] is not None and OMFITaux['rootGUI'].globalgetvar('figsOnTop'): master.transient(OMFITaux['rootGUI']) master.wm_title(label) master.geometry("710x710") note = ttk.Notebook(master) # plot all content for k, v in list(self['CONTENT'].items()): # overplot the 1D quantities if squeeze: note = v.plot(axes=axes, label='LABEL', **kw) # pack 2D viewers into tabs in a common notebook else: # add the Tkinter GUI tab tab = ttk.Frame(note) note.add(tab, text=k) note.pack() # embed the figure fig = matplotlib.figure.Figure() canvas = FigureCanvasTkAgg(fig, master=tab) canvas.draw() fig.set_canvas(canvas) canvas.get_tk_widget().pack(side='top', fill='both', expand=1) # Add standard toolbar to plot toolbar = NavigationToolbar2(canvas, tab) toolbar.update() canvas._tkcanvas.pack(side='top', fill='both', expand=1) tab.fig = v.plot(figure=fig, **kw) def update_slices(tab, event=None): """Keep all view slices consistent""" if hasattr(tab.fig, 'view'): xlim = tab.fig.view.get_vslice_args() ylim = tab.fig.view.get_hslice_args() for tid in note.tabs(): t = note.children[tid.split('.')[-1]] if t != tab and hasattr(t, 'fig') and hasattr(t.fig, 'view'): view = t.fig.view view.hslice(*ylim) view.vslice(*xlim) tab.update_slices = utils.types.MethodType(update_slices, tab) tab.bind('<FocusOut>', tab.update_slices) # extra features if squeeze: leg = axes.legend() leg.draggable(True) else: # add summary tab to the Tkinter GUI if hasattr(tab.fig, 'view'): tab = ttk.Frame(note) note.add(tab, text='Summary') note.pack() # embed the figure fig = matplotlib.figure.Figure() canvas = FigureCanvasTkAgg(fig, master=tab) canvas.draw() fig.set_canvas(canvas) canvas.get_tk_widget().pack(side='top', fill='both', expand=1) # Add standard toolbar to plot toolbar = NavigationToolbar2(canvas, tab) toolbar.update() canvas._tkcanvas.pack(side='top', fill='both', expand=1) axx = fig.add_subplot(211) axy = fig.add_subplot(212) tab.fig = fig def update_lines(tab, event=None): axx, axy = tab.fig.axes[:2] for a in [axx, axy]: a.lines.clear() a.collections.clear() a.set_prop_cycle('color', pyplot.rcParams['axes.prop_cycle'].by_key()['color']) for tid in note.tabs(): k = note.tab(tid, 'text') t = note.children[tid.split('.')[-1]] if not hasattr(t, 'fig') or not hasattr(t.fig, 'view'): continue fig = t.fig v = fig.view # re-produce fills (l,) = axx.plot(v._hslice_xdata, v._hslice_mean, label=k, **v.plot_options) axx.fill_between( v._hslice_xdata, v._hslice_mean - v._hslice_std, v._hslice_mean + v._hslice_std, color=l.get_color(), alpha=0.3 ) (l,) = axy.plot(v._vslice_xdata, v._vslice_mean, label=k, **v.plot_options) axy.fill_between( v._vslice_xdata, v._vslice_mean - v._vslice_std, v._vslice_mean + v._vslice_std, color=l.get_color(), alpha=0.3 ) # refresh labels # axx.texts = [axx.text(0.02,0.95,v.axx.texts[0].get_text(),verticalalignment='top', # transform=axx.transAxes)] # axy.texts = [axy.text(0.02,0.95,v.axy.texts[0].get_text(),verticalalignment='top', # transform=axy.transAxes)] axx.set_xlabel(fig.view.axm.get_xlabel()) axx.set_ylabel(fig.view.axx.get_ylabel()) axy.set_ylabel(fig.view.axy.get_xlabel()) axy.set_xlabel(fig.view.axm.get_ylabel()) axx.autoscale() axy.autoscale() lx = axx.legend() ly = axy.legend() tab.fig.canvas.draw() return tab.update_lines = utils.types.MethodType(update_lines, tab) tab.bind('<FocusIn>', tab.update_lines) # resize notebook figures with main window def set_fig_size(event=None): master.unbind('<Configure>') master.update_idletasks() note.configure(width=master.winfo_width()) note.configure(height=master.winfo_height()) master.bind('<Configure>', set_fig_size) set_fig_size() master.bind('<Configure>', set_fig_size) # allow keys to change tabs note.enable_traversal() return note
plot.__doc__ += OMFITtranspData.plot.__doc__
[docs]def check_TRANSP_run(runid, project=None, tunnel=None): """ Function that checks the status of a TRANSP run as reported by the TRANSP MONITOR GRID website: https://w3.pppl.gov/transp/transpgrid_monitor :param runid: runid to be checked :param project: project (ie. tokamak) of the runid (optional) :param tunnel: use SOCKS via specified tunnel :return: * None if no matching runid/project is found * tuple with 1) True/None/False if run went ok, run is waiting, run failed and 2) dictionary with parsed HTML information """ socks = {} if tunnel is not None: tmp = setup_socks(tunnel, ssh_path=SERVER['localhost'].get('ssh_path', None)) socks['http'] = 'socks5://localhost:' + tmp[2] socks['https'] = 'socks5://localhost:' + tmp[2] url = 'https://w3.pppl.gov/cgi-bin/transpgrid_monitor.frames' data = {'runid': runid} if project is not None: data.update({'project': project}) import requests from urllib3.exceptions import InsecureRequestWarning with warnings.catch_warnings(record=False) as w: warnings.filterwarnings("ignore", category=InsecureRequestWarning) response = requests.get(url, data, proxies=socks, verify=False) response.raise_for_status() the_page = response.text items = ['project', 'owner', 'details', 'status', 'remarks'] parsed = OrderedDict() for line in the_page.split('\n'): if np.all([k in line for k in items]): line = re.sub('&nbsp', '', line) line = re.sub('''<(?:"[^"]*"['"]*|'[^']*'['"]*|[^'">])+>''', '\n', line) line = [_f for _f in line.split('\n') if _f] for entry, value in zip(line[::2], line[1::2]): parsed.setdefault(entry, '') parsed[entry] += value wait = ['submitted', 'active', 'HALT_RQST', 'mdswrite'] ok = ['success', 'Fetched'] bad = ['stopped', 'canceled', 'HALT_FAILED', 'double', 'nopriv', 'suspended'] if np.any([k in ok for k in list(parsed.keys())]): return True, parsed elif np.any([k in wait for k in list(parsed.keys())]): return None, parsed elif np.any([k in bad for k in list(parsed.keys())]): return False, parsed
[docs]def wait_TRANSP_run(runid, project=None, t_check=5, verbose=True, tunnel=None): """ Function that waits for a TRANSP run to end as reported by the TRANSP MONITOR GRID website: https://w3.pppl.gov/transp/transpgrid_monitor :param runid: runid to be checked :param project: project (ie. tokamak) of the runid (optional) :param t_check: how often to check (seconds) :param verbose: print to screen :param tunnel: use SOCKS via specified tunnel :return: * None if no matching runid/project is found * tuple with 1) True/False if run went ok or run failed and 2) dictionary with parsed HTML information """ aborted = tk.BooleanVar() aborted.set(False) if OMFITaux['rootGUI'] is not None: def onAbort(): aborted.set(True) try: if OMFITaux['pythonRunWindows'][-1] is None: raise RuntimeError('--') top = ttk.Frame(OMFITaux['pythonRunWindows'][-1], borderwidth=2, relief=tk.GROOVE) top.pack(side=tk.TOP, expand=tk.NO, fill=tk.BOTH, padx=5, pady=5) except Exception: top = tk.Toplevel(OMFITx._topGUI(OMFITaux['rootGUI'])) top.transient(OMFITaux['rootGUI']) top.update_idletasks() ttk.Label(top, text='TRANSP wait ' + str(runid), wraplength=top.winfo_width()).pack(side=tk.TOP, expand=tk.NO, fill=tk.X) p = ttk.Progressbar(top, orient=tk.HORIZONTAL, mode='indeterminate') p.start() p.pack(padx=5, pady=5, expand=tk.NO, fill=tk.X) frm = ttk.Frame(top) ttk.Button(frm, text="Abort", command=onAbort).pack(side=tk.LEFT, expand=tk.NO, fill=tk.X) frm.pack(side=tk.TOP) top.update_idletasks() status = None old_print = None t = -1 dt = 0.1 n = 0 while not aborted.get(): if t < 0: t = t_check out = check_TRANSP_run(runid, project, tunnel=tunnel) # if the runid does not appear in the list # wait 5x the t_check before giving up if out is None: if n == 5: if OMFITaux['rootGUI'] is not None: top.destroy() return None n += 1 # if the runid is listed print only new updates else: n = 0 if old_print != repr(out[1]): if verbose: print('-' * 5 + ' ' + str(runid) + ' ' + '-' * 5 + ' ' + now()) for k in out[1]: printi('%s : %s' % (k, out[1][k])) elif out[0] is not None: break old_print = repr(out[1]) sleep(dt) t = t - dt if OMFITaux['rootGUI'] is not None: top.destroy() if aborted.get(): raise OMFITexception('-- Aborted by user waiting for TRANSP run %s --' % str(runid)) return out
[docs]def next_available_TRANSP_runid(runid, project, increment=1, skiplist=[], server=None): """ Function which checks what MDS+ tree entries are available :param runid: runid to start checking from (included) :param project: project [e.g. D3D, ITER, NSTX, ...] used to set the MDS+ TRANSP tree and server to be queried :param increment: positive / negative :param skiplist: list of runids to skip :param server: MDS+ TRANSP server to be queried [e.g. 'atlas.gat.com', or 'transpgrid.pppl.gov'] :return: tuple with next available runid (as integer with format shotXXYY) and augmented skiplist """ # handle letter in runid try: int(runid) except Exception: shot = runid[:-3] letter = runid[-3:-2].upper() index = runid[-2:] runid = str(str(shot) + str(ord(letter) - ord('A') + 1) + index) runid = str(runid) runid_base = str(runid)[:-2] # wrap around counting up/down if increment > 0: lst = np.mod(int(runid[-2:]) - 1 + np.arange(0, 99), 99) + 1 else: lst = np.mod(int(runid[-2:]) - 1 - np.arange(0, 99), 99) + 1 # handle MDS+ server/treename if server == None: if project in ['D3D', 'DIII-D']: server = 'atlas.gat.com' project = 'D3D' else: server = 'transpgrid.pppl.gov' if server == 'atlas.gat.com': tree = 'transp' else: tree = 'transp_' + project.lower() # look in search for first available spot list_busy = copy.copy(skiplist) import MDSplus for k in lst: runid = int('%s%02d' % (runid_base, k)) if k in list_busy: printi('skipping %d' % runid) continue printi('testing %d' % runid) try: tmp = OMFITmdsValue(server=server, treename=tree, shot=runid, TDI='\\' + tree.upper() + '::TOP.OUTPUTS.ONE_D.AIMP').data() if tmp is None or isinstance(tmp, np.ndarray): printw('MDSplus tree exists') list_busy.append(k) except Exception as _excp: printi('Found available MDSplus tree') return runid, list_busy raise OMFITexception('No available runid for %s' % runid_base)
[docs]class OMFITplasmastate(OMFITnc): """ Class for handling TRANSP netcdf statefile (not to be confused with the time-dependent TRANSP output CDF file) """ sources = { 'pe_trans': 'Total power to electrons', 'pi_trans': 'Total power to ions', 'qie': 'Collisional exchange from ions to electrons', 'pbe': 'Beam power to electrons', 'pbi': 'Beam power to ions', 'pbth': 'Thermalization of beam power to ions', 'peech': 'ECH power to electrons', 'pohme': 'Ohmic heating power to electrons', 'pmine': 'Electron heating power by minority ions', 'pmini': 'Ion heating power by minority ions', 'pminth': 'Thermalization of ion heating power by minority ions', 'picth': 'Direct ion heating power by ICRF', 'pfuse': 'Fusion alpha power transferred to electrons', 'pfusi': 'Fusion alpha power transferred to thermal ions', 'pfusth': 'Thermalization of fusion alpha power transferred to thermal ions', 'prad_cy': 'Radiated power: synchrotron', 'prad_br': 'Radiated power: bremsstrahlung', 'prad_li': 'Radiated power: line', 'tq_trans': 'Angular momentum source torque', 'sn_trans': 'Particle source', }
[docs] def calcQ(self): """ :return: fusion gain """ auxi = 0 for k in ['pbi', 'picth', 'pmini']: auxi += np.sum(self[k]['data']) auxe = 0 for k in ['pbe', 'peech', 'pmine', 'pohme']: auxe += np.sum(self[k]['data']) aux = auxe + auxi fuse = np.sum(self['pfuse']['data']) fusi = np.sum(self['pfusi']['data']) fus_alpha = fuse + fusi fus_neut = (fuse + fusi) * 4 return (fus_neut + fus_alpha) / aux
[docs] def summary_sources(self): """ Print summary of integrated sources """ for item in sorted(list(self.sources.keys())): if item.startswith('p'): print('%s:% 4d MW [%s]' % (item.ljust(10), np.sum(self[item]['data']) / 1e6, self.sources[item])) if item.startswith('s'): print('%s:% 4d 1E20/s [%s]' % (item.ljust(10), np.sum(self[item]['data']) / 1e20, self.sources[item])) if item.startswith('t'): print('%s:% 4d N*m^2 [%s]' % (item.ljust(10), int(np.sum(self[item]['data'])), self.sources[item]))
[docs] def to_omas(self, ods=None, time_index=0, update=['core_profiles', 'equilibrium', 'core_sources']): """ translate TRANSP plasmastate file (output of TRXPL and plasmastate of SWIM) to OMAS data structure :param ods: input ods to which data is added :param time_index: time index to which data is added :update: list of IDS to update from statefile :return: ODS """ from omas import ODS, omas_environment cocosio = 2 # need to confirm that indeed TRANSP plasmastate is in COCOS 2 if ods is None: ods = ODS() # set the shot number ods['dataset_description.data_entry.pulse'] = self['shot_number']['data'] # ------------------ # Equilibrium # ------------------ if 'equilibrium' in update: # set time array ods.set_time_array('equilibrium.time', time_index, self['t1']['data']) # t0,t1,tfinal,tinit? # shortcut eq = ods['equilibrium.time_slice'][time_index] # define coordinate of input/output quantities coordsio = {'equilibrium.time_slice.%d.profiles_1d.psi' % time_index: self['psipol']['data']} # assign data with omas_environment(ods, cocosio=cocosio, coordsio=coordsio): eq['global_quantities.magnetic_axis.b_field_tor'] = self['B_axis_vac']['data'] ods.set_time_array('equilibrium.vacuum_toroidal_field.b0', time_index, self['B_axis_vac']['data']) ods['equilibrium.vacuum_toroidal_field.r0'] = self['R_axis']['data'] eq['global_quantities.magnetic_axis.r'] = self['R_axis']['data'] eq['global_quantities.magnetic_axis.z'] = self['Z_axis']['data'] eq['global_quantities.psi_axis'] = self['psipol']['data'][0] eq['global_quantities.psi_boundary'] = self['psipol']['data'][-1] eq['global_quantities.ip'] = self['curt']['data'][-1] eq['profiles_1d.rho_tor_norm'] = self['rho']['data'] eq['profiles_1d.f'] = self['g_eq']['data'] eq['profiles_1d.pressure'] = self['P_eq']['data'] eq['profiles_1d.f_df_dpsi'] = deriv(self['psipol']['data'], self['g_eq']['data']) * self['g_eq']['data'] eq['profiles_1d.dpressure_dpsi'] = deriv(self['psipol']['data'], self['P_eq']['data']) eq['profiles_1d.q'] = self['q_eq']['data'] eq['profiles_1d.rho_tor_norm'] = self['rho']['data'] eq['profiles_2d.0.grid_type.index'] = 1 eq['profiles_2d.0.grid.dim1'] = self['R_grid']['data'] eq['profiles_2d.0.grid.dim2'] = self['Z_grid']['data'] eq['profiles_2d.0.psi'] = self['PsiRZ']['data'].T eq['boundary.outline.r'] = self['R_geo']['data'][:, -1] eq['boundary.outline.z'] = self['Z_geo']['data'][:, -1] eq['profiles_1d.elongation'] = self['elong']['data'] eq['profiles_1d.triangularity_upper'] = self['triangU']['data'] eq['profiles_1d.triangularity_lower'] = self['triangL']['data'] # ============WALL ods['wall.description_2d.0.limiter.type.name'] = 'first_wall' ods['wall.description_2d.0.limiter.type.index'] = 0 ods['wall.description_2d.0.limiter.type.description'] = 'first wall' ods['wall.description_2d.0.limiter.unit.0.outline.r'] = self['rlim']['data'] ods['wall.description_2d.0.limiter.unit.0.outline.z'] = self['zlim']['data'] # ------------------ # Core profiles # ------------------ if 'core_profiles' in update: # set time array ods.set_time_array('core_profiles.time', time_index, self['t1']['data']) # t0,t1,tfinal,tinit? # shortcut prof1d = ods['core_profiles.profiles_1d.%d' % time_index] # define coordinate of input/output quantities coordsio = { 'core_profiles.profiles_1d.%d.grid.rho_tor_norm' % time_index: self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0 } # assign data with omas_environment(ods, coordsio=coordsio, cocosio=cocosio): ods.set_time_array('core_profiles.vacuum_toroidal_field.b0', time_index, self['B_axis_vac']['data']) ii = -1 fi = -1 bi = -1 mi = -1 for ks, species in enumerate(self['ALL_name']['data']): species = species.strip() if species == 'e': prof1d['electrons.density_thermal'] = self['ns']['data'][ks, :] prof1d['electrons.temperature'] = self['Ts']['data'][ks, :] * 1e3 else: ii += 1 if '_fusn' in species: fi += 1 prof1d['ion'][ii]['label'] = species.replace('_fusn', '') prof1d['ion'][ii]['density_fast'] = self['nfusi']['data'][fi, :] prof1d['ion'][ii]['pressure_fast_perpendicular'] = self['eperp_fusi']['data'][fi, :] prof1d['ion'][ii]['pressure_fast_parallel'] = self['epll_fusi']['data'][fi, :] elif '_beam' in species: bi += 1 prof1d['ion'][ii]['label'] = species.replace('_beam', '') prof1d['ion'][ii]['density_fast'] = self['nbeami']['data'][bi, :] prof1d['ion'][ii]['pressure_fast_perpendicular'] = self['eperp_beami']['data'][bi, :] prof1d['ion'][ii]['pressure_fast_parallel'] = self['epll_beami']['data'][bi, :] elif '_mini' in species: mi += 1 prof1d['ion'][ii]['label'] = species.replace('_mini', '') prof1d['ion'][ii]['density_fast'] = self['nmini']['data'][bi, :] prof1d['ion'][ii]['pressure_fast_perpendicular'] = self['eperp_mini']['data'][bi, :] prof1d['ion'][ii]['pressure_fast_parallel'] = self['epll_mini']['data'][bi, :] else: prof1d['ion'][ii]['label'] = species prof1d['ion'][ii]['density_thermal'] = self['ns']['data'][ks, :] prof1d['ion'][ii]['temperature'] = self['Ts']['data'][ks, :] * 1e3 prof1d['ion'][ii]['element'][0]['z_n'] = list(atomic_element(symbol=prof1d['ion'][ii]['label']).values())[0]['Z'] prof1d['ion'][ii]['element'][0]['a'] = list(atomic_element(symbol=prof1d['ion'][ii]['label']).values())[0]['A'] prof1d['ion'][ii]['multiple_states_flag'] = 0 # calculate derived quantites ods.physics_core_profiles_pressures() ods.physics_core_profiles_zeff() # ------------------ # Core sources # ------------------ if 'core_sources' in update: # set time array ods.set_time_array('core_sources.time', time_index, self['t1']['data']) # t0,t1,tfinal,tinit? def set_source(si, source_name, id_index, source_value, destination): # define coordinates for all sources coordsio = {} coordsio['core_profiles.profiles_1d.%d.grid.rho_tor_norm' % (time_index)] = ( self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0 ) coordsio['core_sources.source.%d.profiles_1d.%d.grid.rho_tor_norm' % (si, time_index)] = ( self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0 ) with omas_environment(ods, coordsio=coordsio, cocosio=cocosio): ods['core_sources.source.%d.identifier.name' % si] = source_name ods['core_sources.source.%d.identifier.index' % si] = id_index source1d = ods['core_sources.source.%d.profiles_1d.%d' % (si, time_index)] source1d['grid.volume'] = vol source1d[destination] = source_value # fluxes are defined between nodes in the grid # volume is stored at the nodes of the grid # place volume info on same grid as fluxes vol = interp1d(self['rho']['data'], self['vol']['data'])(self['rho']['data'][:-1] + np.diff(self['rho']['data']) / 2.0) # assign data prof1d['grid.volume'] = vol volumetric_electron_heating_terms = {'pohme': 7, 'pbe': 2, 'peech': 3, 'pmine': 5, 'pfuse': 6} volumetric_ion_heating_terms = {'pbi': 2, 'picth': 5, 'pmini': 5, 'pfusi': 6} volumetric_electron_particles_terms = {'sbsce': 2} volumetric_momentum_terms = {'tq_trans': 1} si = -1 # electron energy for source, id_index in volumetric_electron_heating_terms.items(): if source in self: si += 1 set_source(si, source, id_index, self[source]['data'], 'electrons.energy') # ion energy for source, id_index in volumetric_ion_heating_terms.items(): if source in self: si += 1 set_source(si, source, id_index, self[source]['data'], 'total_ion_energy') # particle ??? for source, id_index in volumetric_electron_particles_terms.items(): if source in self: si += 1 set_source(si, source, id_index, self[source]['data'][0, :], 'electrons.particles') # momentum ??? for source, id_index in volumetric_momentum_terms.items(): if source in self: si += 1 set_source(si, source, id_index, self[source]['data'], 'momentum_tor') return ods
class transp_out_dynamic_quantity(object): def __init__(self, parent, name): self.parent = parent self.name = name def __call__(self): return self.parent[self.name] def __tree_repr__(self): return self.name, []
[docs]class OMFITtranspOutput(OMFITdataset): """ Class for dynamic serving of TRANSP output data from MDS or CDF """ def __init__(self, transp_out): """ :param transp_out: OMFITnc file, OMFITmds TRANSP tree, or string path to NetCDF file """ if isinstance(transp_out, str): transp_out = OMFITnc(transp_out) if isinstance(transp_out, OMFITmds): self.type = 'MDS' else: self.type = 'CDF' self.transp_out = transp_out self.dynaLoad = True self._dynamic_keys = [] OMFITdataset.__init__(self)
[docs] @dynaLoad def load(self): if self.type == 'MDS': items = self.transp_out['TRANSP_OUT'].keys() else: items = self.transp_out.keys() items = [item for item in items if not item.startswith('_')] for item in items: self._dynamic_keys.append(item) if 'TIME' not in self._dynamic_keys: self._dynamic_keys.insert(0, 'TIME')
def __tree_repr__(self): return self.type, [] @dynaLoad def __tree_keys__(self): return np.unique(list(self.variables.keys()) + self._dynamic_keys).tolist() @dynaLoad def __getitem__(self, key): # return items that exist if key in self: return OMFITdataset.__getitem__(self, key) # return virtual items if requested so elif OMFITaux['virtualKeys'] and key in self._dynamic_keys: return transp_out_dynamic_quantity(self, key) # dynamically evaluate quantity elif key in self._dynamic_keys: transp_data = OMFITtranspData(self.transp_out, key) # 0D data if not len(transp_data['DIM_OF']): tmp = DataArray(transp_data['DATA'], coords={}, dims=()) # 1D data elif len(transp_data['DIM_OF']) == 1: tmp = DataArray(transp_data['DATA'], coords={'TIME': transp_data['DIM_OF'][0]}, dims=('TIME',)) # 2D data elif len(transp_data['DIM_OF']) == 2: x = transp_data['DIM_OF'][0][0] t = transp_data['DIM_OF'][1][:, 0] y = transp_data['DATA'] tmp = DataArray(transp_data['DATA'], coords={'TIME': t, 'X': x}, dims=('TIME', 'X')) self[key] = tmp return OMFITdataset.__getitem__(self, key)
[docs] def to_omas(self): # this may be of use: https://github.com/transp/transp-imas-translator/blob/master/transp2imas/transp2imas.f90 ods = ODS() with omas_environment(ods, cocosio=2): # what COCOS is TRANSP using? ion_species = ['D'] # what is a good way to figure out ion species? times = self['TIME'] for time_index, time in enumerate(times): # ion-profiles for ion_index, ion_species in enumerate(ion_species): ods['core_profiles.profiles_1d.{time_index}.ion.{ion_index}.temperature'.format(**locals())] = self['TI'][time_index, :] # electron-profiles ods['core_profiles.profiles_1d.{time_index}.electrons.density_thermal'.format(**locals())] = self['NE'][time_index, :] * 1e6 ods['core_profiles.profiles_1d.{time_index}.electrons.temperature'.format(**locals())] = self['TE'][time_index, :] # equilibrium ods['equilibrium.time_slice.{time_index}.global_quantities.ip'.format(**locals())] = self['PCURC'][time_index] # wall: for the the time being, we only save limiter info at first time-slice # hopefully other codes can agree this is reasonable for static walls if time_index == 0: ods['wall.description_2d.{time_index}.limiter.type.name'.format(**locals())] = 'first_wall' ods['wall.description_2d.{time_index}.limiter.type.index'.format(**locals())] = 0 ods['wall.description_2d.{time_index}.limiter.type.description'.format(**locals())] = 'first wall' ods['wall.description_2d.{time_index}.limiter.unit.0.outline.r'.format(**locals())] = self['RLIM'][time_index, :] ods['wall.description_2d.{time_index}.limiter.unit.0.outline.z'.format(**locals())] = self['YLIM'][time_index, :] # set the time ods['core_profiles.time'] = times ods['equilibrium.time'] = times ods['wall.time'] = times[:1] # set homogeneous time and other things ods.satisfy_imas_requirements() return ods
[docs]class OMFITfbm(OMFITnc): """ Class for handling NUBEAM FBM distribution function files """
[docs] def plot(self, rf=None, zf=None, cartesian=True, fig=None): """ Plot distribution function :param rf: radial location where to show data in velocity space :param zf: vertical location where to show data in velocity space :return: figure handle """ f = self['F_D_NBI']['data'] energy = self['E_D_NBI']['data'] pitch = self['A_D_NBI']['data'] r2d = self['R2D']['data'] z2d = self['Z2D']['data'] rho = self['X2D']['data'] theta = self['TH2D']['data'] # Find index of our desired (R,Z) if rf is None or zf is None: idx = 0 else: idx = np.argmin(np.sqrt((r2d - rf) ** 2 + np.abs(z2d - zf) ** 2)) # Get beam ion density (#/cm^3) de = energy[1] - energy[0] dp = pitch[1] - pitch[0] bdens = np.sum(f, axis=(1, 2)) * 0.5 * de * dp # Form regular grid rr = np.linspace(np.min(r2d), np.max(r2d), 51) zr = np.linspace(np.min(z2d), np.max(z2d), 51) bdensr = scipy.interpolate.griddata((r2d, z2d), bdens, (rr[None, :], zr[:, None]), method='cubic') if fig is None: fig = pyplot.gcf() fig.suptitle( '{}'.format(self['TOKAMAK']['data']) + ' {}'.format(self['TRANSP_RUNID']['data']) + ' t={0:0.2f}s'.format(float(self['TIME']['data'])) ) ax = pyplot.subplot(1, 2, 1) con = ax.contourf(rr, zr, bdensr, 11) ax.contour(rr, zr, bdensr, 11, colors='black') ax.plot(r2d[idx], z2d[idx], marker='x', color='red') ax.set_aspect('equal') ax.set_title(label='Density $(cm^{-3})$') ax.set_xlabel('R (cm)') ax.set_ylabel('Z (cm)') fig.subplots_adjust(left=0.2) cax = fig.add_axes([0.05, 0.1, 0.03, 0.8]) fig.colorbar(con, cax=cax) ax = pyplot.subplot(2, 2, 2) if not cartesian: t = np.arccos(np.linspace(-1, 1, len(pitch))) e = energy * 1e-3 E, T = np.meshgrid(e, t) x = np.cos(T) * E y = np.sin(T) * E ax.contourf(x, y, f[idx, :, :], 11) ax.set_aspect('equal') ax.set_xlabel('Energy$_\\parallel$ (keV)') ax.set_ylabel('Energy$_\\perp$ (keV)') else: ax.contourf(energy * 1e-3, pitch, f[idx, :, :], 11) ax.set_ylim(-1, 1) ax.set_xlabel('Energy (keV)') ax.set_ylabel('Pitch $V_{||}/V$') ax.set_title('$f_b(E,\\xi)$' + ' R={0:0.1f}, Z={1:0.1f}'.format(r2d[idx], z2d[idx])) ax = pyplot.subplot(2, 2, 4) ax.scatter(rho, bdens * 1e-13, c=theta, alpha=0.25, label='$n_b(\\theta) [10^{19}m^{-3}]$') ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, np.max(bdens) * 1e-13]) ax.set_xlabel('$\\rho$') ax.legend() return fig
[docs] def plot_energy_space(self, rmin, rmax, zmin, zmax, emin=0 * 1e3, emax=1000 * 1e3, cartesian=True, ax=None): """ Average distribution function over a specified R,Z and plot energy versus pitch :param rmin: minimum R to average over :param rmax: maximum R to average over :param zmin: minimum Z to average over :param zmax: maximum Z to average over :param emin: minimum energy to average over :param emax: maximum energy to average over :param cartesian: plot in energy/pitch space or E_\\parallel and E_\\perp :param ax: axes """ f = self['F_D_NBI']['data'] R = self['R2D']['data'] Z = self['Z2D']['data'] energy = self['E_D_NBI']['data'] pitch = self['A_D_NBI']['data'] emini = np.argmin(abs(energy - emin)) emaxi = np.argmin(abs(energy - emax)) total_f = np.zeros((f.shape[1], f.shape[2])) k = 0 for i, r in enumerate(R): if r <= rmax and r >= rmin: if Z[i] <= zmax and Z[i] >= zmin: total_f[:, :] += f[i, :, :] k += 1 levels = [ np.amin(total_f[:, emini:emaxi] / k), np.amax(total_f[:, emini:emaxi] / k) / 40, np.amax(total_f[:, emini:emaxi] / k) / 20, np.amax(total_f[:, emini:emaxi] / k) / 10, np.amax(total_f[:, emini:emaxi] / k) / 4, np.amax(total_f[:, emini:emaxi] / k) / 3, np.amax(total_f[:, emini:emaxi] / k) / 2, np.amax(total_f[:, emini:emaxi] / k) / 1.5, np.amax(total_f[:, emini:emaxi] / k) / 1.25, np.amax(total_f[:, emini:emaxi] / k) / 1.2, np.amax(total_f[:, emini:emaxi] / k) / 1.1, np.amax(total_f[:, emini:emaxi] / k) / 1.05, np.amax(total_f[:, emini:emaxi] / k), ] if ax is None: ax = pyplot.gca() if not cartesian: t = np.arccos(np.linspace(-1, 1, len(pitch))) e = energy[emini:emaxi] * 1e-3 E, T = np.meshgrid(e, t) x = np.cos(T) * E y = np.sin(T) * E ax.contourf(x, y, total_f[:, emini:emaxi] / k, levels=levels) ax.contour(x, y, total_f[:, emini:emaxi] / k, levels=levels) ax.set_aspect('equal') ax.set_xlabel('Energy$_\\parallel$ (keV)') ax.set_ylabel('Energy$_\\perp$ (keV)') else: ax.contourf(energy[emini:emaxi] * 1e-3, pitch, total_f[:, emini:emaxi] / k, levels=levels) ax.set_ylim(-1, 1) ax.set_xlim(10, 100) ax.set_xlabel('Energy (keV)') ax.set_ylabel('Pitch $V_\\parallel/V$') ax.set_title( 'D3D $f_b(E,\\xi)$ ' + ' {0} Rmin={1:0.1f}, Rmax={2:0.1f}, \nZmin={3:0.1f}, Zmax={4:0.1f}, average over {5} points'.format( self['TRANSP_RUNID']['data'], rmin, rmax, zmin, zmax, k ) ) return ax
[docs] def to_omas(self, ods=None, time_index=0): """ Save NUBEAM distribution function to OMAS :param ods: input ods to which data is added :param time_index: time index to which data is added :return: updated ODS """ if ods is None: ods = ODS() # shortcut ggd = ods[f'distributions.distribution[{time_index}].ggd[0]'] # assign grid spaces for different spatial coordinates for s, (item, name, coordinates_type, norm) in enumerate( [ ('R2D', 'r', 1, 0.01), # r [cm-->m] ('Z2D', 'z', 2, 0.01), # z [cm-->m] ('X2D', 'rho', 12, 1.0), # rho [-] ('TH2D', 'theta', 22, 1.0), # theta [rad] ] ): # standard or fourier data ggd[f'grid.space[{s}].geometry_type.index'] = 0 # 0: standard, 1:Fourier ggd[f'grid.space[{s}].geometry_type.name'] = name + '_pitch_energy' ggd[f'grid.space[{s}].coordinates_type'] = [coordinates_type, 403, 301] ggd[f'grid.space[{s}].objects_per_dimension[0].object[0].geometry'] = self[item]['data'] * norm ggd[f'grid.space[{s}].objects_per_dimension[0].object[1].geometry'] = self['A_D_NBI']['data'] # pitch v_parallel/v [-] ggd[f'grid.space[{s}].objects_per_dimension[0].object[2].geometry'] = self['E_D_NBI']['data'] * 1e3 # energy [kev --> ev] # assign the distribution function data itself ggd[f'expansion[0].grid_subset[0].values'] = self['F_D_NBI']['data'].flatten() return ods
################################################# Basic Data Manipulation in TRANSP def vint(d, dvol=None): """ Volume integrate a TRANSP OMFITmdsValue object. Currently only available for objects from the TRANSP tree. :param d: OMFITtranspData object from the mds+ TRANSP OUTPUTS.TWO_D tree. :type d: OMFITtranspData :param dvol: OMFITtranspData object 'dvol' from the mds TRANSP tree. If None, will be taken from Data's MDStree. :type dvol: OMFITtranspData or None **Example:** Assuming the root is an OMFIT TRANSP module with a loaded run. >> mvisc = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'MVISC') >> tvisc = vint(mvisc) >> tvisc['DATA'][0,-1] # total viscous torque at first time step in Nm 2.0986965 >> mvisc2 = vder(tvisc) >> np.all(np.isclose(mvisc2['DATA'][0,:],mvisc['DATA'][0,:])) True """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = vint(v, dvol) return dnew if dvol == None: if 'DVOL' in d: dvol = d['DVOL'] elif 'MDS' in d: dvol = d['MDS']['OUTPUTS']['TWO_D']['DVOL'] else: dvol = OMFITmdsValue(d.server, d.treename, d.shot, TDI='DVOL') elif isinstance(dvol, OMFITmdsValue): dvol = OMFITtranspData(dvol) # if type(d)==OMFITmdsValue: # d = OMFITtranspData(d) dvol = set_grid(dvol, 'X') # just in case it was changed and given dint = set_grid(d, 'XB') ddv = set_grid(d, 'X')['DATA'] * dvol['DATA'] dint['DATA'] = np.cumsum(ddv, axis=1) # clean up metadata dint['LABEL'] = 'int({:},dV)'.format(dint['LABEL']) dint['RPLABEL'] = dint['RPLABEL'].replace('DENSITY', '') dint['UNITS'] = dint['UNITS'] + '*CM**3' dint['UNITS'] = dint['UNITS'].replace('/CM3*CM**3', '') # TRANSP conventions dint['UNITS'] = dint['UNITS'].replace('/Cm3*CM**3', '') # TRANSP conventions dint['UNITS'] = dint['UNITS'].replace('/CM3/SEC*CM**3', '/SEC') # TRANSP conventions return dint OMFITtranspData.vint = vint OMFITtranspMultigraph.vint = vint def vder(d, dvol=None): """ Derivative with respect to volume for TRANSP variables consistent with TRANSP finite differencing methods. See Solomon's unvolint.pro :param d: OMFITtranspData object from the mds+ TRANSP tree. :type d: OMFITtranspData :param dvol: OMFITtranspData object 'dvol' from the mds TRANSP tree. If None, will be taken from the Data's MDStree. :type dvol: OMFITtranspData or None :return: dy/dV OMFITtransData object on zone-centered grid. **Example:** Assuming the root is an OMFIT TRANSP module with a loaded run. >> mvisc = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'MVISC') >> tvisc = vint(mvisc) >> tvisc['DATA'][0,-1] # total viscous torque at first time step in Nm 2.0986965 >> mvisc2 = vder(tvisc) >> np.all(np.isclose(mvisc2['DATA'][0,:],mvisc['DATA'][0,:])) True """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = vder(v, dvol) return dnew if dvol == None: dvol = d['DVOL'] elif isinstance(dvol, OMFITmdsValue): dvol = OMFITtranspData(dvol) if isinstance(d, OMFITmdsValue): d = OMFITtranspData(d) dvol = set_grid(dvol, 'X') # just in case it was changed and given dder = set_grid(d, 'X') y = set_grid(d, 'XB')['DATA'] y = np.hstack([np.zeros([len(dder['DIM_OF'][1]), 1]), y]) dder['DATA'] = np.diff(y, axis=1) / dvol['DATA'] # clean up metadata dder['LABEL'] = 'd{:}/dV)'.format(dder['LABEL']) dder['UNITS'] = dder['UNITS'] + '/CM**3' dder['UNITS'] = dder['UNITS'].replace('CM3/CM**3', '') # TRANSP conventions dder['UNITS'] = dder['UNITS'].replace('Cm3/CM**3', '') # TRANSP conventions return dder OMFITtranspData.vder = vder OMFITtranspMultigraph.vder = vder def sint(d, darea=None): """ Surface integrate a TRANSP OMFITmdsValue object. Currently only available for objects from the TRANSP tree. :param d: OMFITtranspData object from the mds+ TRANSP OUTPUTS.TWO_D tree. :type d: OMFITtranspData :param darea: OMFITtranspData object 'darea' from the mds TRANSP tree. If None, will be taken from Data's MDStree. :type darea: OMFITtranspData or None **Example:** mds = OMFITmds('DIII-D','transp',1633030101) cur = OMFITtranspData(mds,'CUR') da = OMFITtranspData(mds,'DAREA') curi = cur.sint(darea=da) print(curi['DATA'][0,-1]) pcur = OMFITtranspData(mds,'PCUR') print(pcur['DATA'][0]) -> 1.16626e+06 -> 1.16626e+06 """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = sint(v, darea) return dnew if darea == None: if 'DAREA' in d: darea = d['DAREA'] elif 'MDS' in d: darea = d['MDS']['OUTPUTS']['TWO_D']['DAREA'] else: darea = OMFITmdsValue(d.server, d.treename, d.shot, TDI='DAREA') elif isinstance(darea, OMFITmdsValue): darea = OMFITtranspData(darea) # if type(d)==OMFITmdsValue: # d = OMFITtranspData(d) darea = set_grid(darea, 'X') # just in case it was changed and given dint = set_grid(d, 'XB') dda = set_grid(d, 'X')['DATA'] * darea['DATA'] dint['DATA'] = np.cumsum(dda, axis=1) # clean up metadata dint['LABEL'] = 'int({:},dA)'.format(dint['LABEL']) dint['RPLABEL'] = dint['RPLABEL'].replace('DENSITY', '') dint['UNITS'] = dint['UNITS'] + '*CM**2' dint['UNITS'] = dint['UNITS'].replace('/CM2*CM**2', '') # TRANSP conventions dint['UNITS'] = dint['UNITS'].replace('/Cm2*CM**2', '') # TRANSP conventions return dint OMFITtranspData.sint = sint OMFITtranspMultigraph.sint = sint def set_grid(d, zone='X', dvol=None): """ Interpolate 2D TRANSP data to rho grid zone-boundary or zone-centered values. :param d: OMFITtranspData object from the mds+ TRANSP tree. :param zone: ``'XB'`` for zone-boundary rho, ``'X'`` for zone-centered. ``'V'`` or ``'VB'`` for volume. :type zone: str :param dvol: OMFITtranspData object 'dvol' from the mds+ TRANSP tree. If None, will be taken from Data's MDStree. return: OMFITtranspData object on the specified rho grid **Example:** Assuming the root is an OMFIT TRANSP module with a loaded run. >> mvisc = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'MVISC') >> mvisc['XAXIS'] 'X' >> print(mvisc['DIM_OF'][0][:3]) [ 0.01 0.03 0.05] >> mviscb = set_grid(mvisc,'XB') >> mviscb['XAXIS'] 'XB' >> print(mviscb['DIM_OF'][0][:3]) [ 0.02 0.04 0.06] """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = set_grid(v, zone, dvol) return dnew if dvol == None and 'V' in zone: dvol = d['DVOL'] elif isinstance(dvol, OMFITmdsValue): dvol = OMFITtranspData(dvol) if isinstance(d, OMFITmdsValue): d = OMFITtranspData(d) zone = zone.upper() db = copy.copy(d) # return a copy if no change if d['XAXIS'] == zone: return db # native transp rho grid center or boundary if zone in ['X', 'XB']: if 'MDS' in d: xnew = d['MDS']['TRANSP_OUT'][zone].data() else: xnew = d['CDF'][zone]['data'] y = d['DATA'] # .ravel() x = d['DIM_OF'][0][0, :] # .ravel() t = d['DIM_OF'][1][:, 0] # .ravel() # f = LinearNDInterpolator(zip(x,t),y) # db['DATA'] = f(zip(xnew.ravel(),t.ravel())).reshape(t.shape) f = RectBivariateSpline(x, t, y.T) # assume regular grid db['DATA'] = f(xnew[0, :], t).T db['DIM_OF'][0] = xnew # volume grid center or boundary for easy integration of densities elif zone in ['V', 'VB']: db = set_grid(d, zone.replace('V', 'X')) v = set_grid(xint(dvol), zone.replace('V', 'X')) db['DIM_OF'][0] = v['DATA'] else: raise ValueError('Valid zones are "X", "XB", "V", or "VB".') db['XAXIS'] = zone return db OMFITtranspData.set_grid = set_grid OMFITtranspMultigraph.set_grid = set_grid def xdiff(d): """ TRANSP convention of simple finite difference along rho (axis=0), including switching of centered/boundary grids. :param d: OMFITtranspData object from the mds+ TRANSP tree. :return: OMFITtranspData differenced on the other rho grid (``'X'`` vs ``'XB'``) **Example:** >> x = Data(['x','TRANSP'],1470670204) >> dx = xdiff(x) >> print(dx['XAXIS']) XB >> print(dx.y[0,:3]) [ 0.02 0.02 0.02] """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = xdiff(v) return dnew ddiff = copy.copy(d) # extend axis by 1 (back of forward) tn = list(d['DIM_OF'][1].T) tn.insert(0, d['DIM_OF'][1][:, 0]) xn = list(d['DIM_OF'][0].T) if d['XAXIS'] == 'X': xn.insert(len(xn), xn[-1] + (xn[-1] - xn[-2])) ddiff = set_grid(ddiff, 'XB') elif d['XAXIS'] == 'XB': xn.insert(0, xn[0] - (xn[1] - xn[0])) ddiff = set_grid(ddiff, 'X') else: raise ValueError('Data object must have xaxis attribute "X" or "XB"') # data on extended axis y = d['DATA'].ravel() x = d['DIM_OF'][0].ravel() t = d['DIM_OF'][1].ravel() fl = LinearNDInterpolator(list(zip(x, t)), y) fn = NearestNDInterpolator(list(zip(x, t)), y) dn = fl(list(zip(np.array(xn).ravel(), np.array(tn).ravel()))).reshape(np.shape(xn)) dn[np.isnan(dn)] = fn(list(zip(np.array(xn)[np.isnan(dn)].ravel(), np.array(tn)[np.isnan(dn)].ravel()))) # simple finite differences dy = np.diff(dn, axis=0).T # new data ddiff['DATA'] = dy # clean up metadata ddiff['LABEL'] = 'd({:})'.format(d['LABEL']) ddiff['RPLABEL'] = 'Delta {:})'.format(d['RPLABEL']) return ddiff OMFITtranspData.xdiff = xdiff OMFITtranspMultigraph.xdiff = xdiff def xder(d): """ TRANSP style differentiation in rho. :param d: OMFITtranspData object from the TRANSP tree. :return: dy/drho OMFITtranspData object on the other rho grid. """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = xder(v) return dnew dx = xdiff(OMFITtranspData(d['MDS'], d['XAXIS'])) dder = xdiff(d) dder['DATA'] /= dx['DATA'] # clean up metadata dder['LABEL'] = '{:}/drho'.format(dder['LABEL']) return dder OMFITtranspData.xder = xder OMFITtranspMultigraph.xder = xder def xint(d): """ TRANSP style integration in rho. UNVALIDATED. :param d: OMFITtranspData object from the TRANSP tree. :return: dy/drho OMFITtranspData object on the other rho grid. """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = xint(v) return dnew dint = copy.copy(d) dint['DATA'] = integrate.cumtrapz(dint['DATA'], x=dint['DIM_OF'][0], axis=1, initial=0) # clean up metadata dint['LABEL'] = 'int({:},drho)'.format(dint['LABEL']) return dint OMFITtranspData.xint = xint OMFITtranspMultigraph.xint = xint def aol(d, rmnmp=None): """ Normalized inverse scale length a/Lx with derivative with respect to midplane minor radius "r". The equation is aol = -(a/X)dX/dr :param d: OMFITtranspData object from the TRANSP tree. :param rmnmp: OMFITtranspData "RMNMP" :return: """ if isinstance(d, OMFITtranspMultigraph): dnew = copy.copy(d) for k, v in list(dnew['CONTENT'].items()): dnew['CONTENT'][k] = aol(v, rmnmp) return dnew if rmnmp == None: if 'RMNMP' in d: rmnmp = d['RMNMP'] elif 'MDS' in d: rmnmp = d['MDS']['OUTPUTS']['TWO_D']['RMNMP'] else: rmnmp = OMFITmdsValue(d.server, d.treename, d.shot, TDI='RMNMP') elif isinstance(rmnmp, OMFITmdsValue): rmnmp = OMFITtranspData(rmnmp) a = rmnmp['DATA'][:, -1] dr = np.zeros(d['DATA'].shape) for i in range(d['DATA'].shape[0]): dr[i, :] = deriv(rmnmp['DATA'][i, :], d['DATA'][i, :]) dder = copy.copy(d) dder['DATA'] = -1.0 * (a[:, np.newaxis] / d['DATA']) * dr # clean up metadata dder['LABEL'] = 'a/L_{:})'.format(dder['LABEL']) dder['UNITS'] = '-' return dder OMFITtranspData.aol = aol OMFITtranspMultigraph.aol = aol def tavg(d, time=None, avgtime=None): """ Time average data :param d: OMFITtranspData object from the TRANSP tree. :param time: Center time in seconds :param avgtime: Averaging window (+/-) in seconds :return: For 1D input uncertainty uarray of the data time avarge and standard deviation. For 2D input uncertainty uarray of the profile with time avarge and standard deviation. **Example:** Assuming data in root['OUTPUTS']['TRANSP_OUTPUT'] time = 2.0 avgtime = 0.1 # 1D tr_neutt = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'], 'NEUTT') tr_neutt_tavg = tr_neutt.tavg(time=time, avgtime=avgtime) tr_neutt.plot() ax = gca() uband([time-avgtime, time+avgtime],np.repeat(tr_neutt_tavg,2),ax=ax) ax.text(time,nominal_values(tr_neutt_tavg)+std_devs(tr_neutt_tavg), '{0:0.3g}+/-{1:0.3g}'.format(nominal_values(tr_neutt_tavg),std_devs(tr_neutt_tavg))) # 2D tr_ne = OMFITtranspData(root['OUTPUTS']['TRANSP_OUTPUT'],'NE') tr_ne_tavg = tr_ne.tavg(time=time, avgtime=avgtime) figure() tr_ne.plot(slice_axis=1,slice_at=time) ax = gca() uband(tr_ne['DIM_OF'][0][0,:],tr_ne_tavg,ax=ax) """ if time is None or avgtime is None: raise (OMFITexception("Must set time and average time")) # Determine if 1D or 2D data if len(d['DIM_OF']) == 1 and d['UNITS_DIM_OF'][0] == 's': # 1D idx = np.where((d['DIM_OF'][0] >= time - avgtime) * (d['DIM_OF'][0] <= time + avgtime))[0] if len(idx): ud = uarray(np.mean(d['DATA'][idx]), np.std(d['DATA'][idx])) else: raise (OMFITexception("Averaging window empty.")) elif len(d['DIM_OF']) == 2 and d['UNITS_DIM_OF'][1] == 's': # 2D idx = np.where((d['DIM_OF'][1][:, 0] >= time - avgtime) * (d['DIM_OF'][1][:, 0] <= time + avgtime))[0] if len(idx): ud = uarray(np.mean(d['DATA'][idx, :], axis=0), np.std(d['DATA'][idx, :], axis=0)) else: raise (OMFITexception("Averaging window empty.")) else: raise (OMFITexception("Unrecognized dimensions of quantity to average.")) return ud OMFITtranspData.tavg = tavg ############################################ if '__main__' == __name__: test_classes_main_header() # This is not a real TRANSP output file, but the class should be able to finish __init__() with any .nc sample. # This is just a limited initialization test, not a detailed test of all class features. test_nc_file = os.sep.join([OMFITsrc, '..', 'samples', 'bmn.nc']) class_instance = OMFITtranspOutput(test_nc_file) class_instance.load()